首页> 外文会议>Microfluidics, bioMEMS, and medical microsystems XI >Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology
【24h】

Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

机译:使用基于3D多层芯片的技术动态分析转基因斑马鱼胚胎中的血管生成

获取原文
获取原文并翻译 | 示例

摘要

Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(flila:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.
机译:人类疾病的转基因斑马鱼(Danio rerio)模型最近在药物发现和分子病理学中作为创新的实验系统出现。但是,目前没有可用的技术允许在实时发育分析过程中自动固定和处理大量空间编码的转基因胚胎。这项工作描述了使用红外激光微加工技术直接在聚甲基丙烯酸甲酯透明热塑性塑料中制造的基于3D微流体芯片的集成系统的概念验证设计和验证。该设备的核心是利用3D微机械陷阱的阵列,通过低压抽吸主动捕获并固定单个胚胎。它还具有内置压电微隔膜泵,胚胎捕获吸引歧管,药物输送歧管和光学透明的氧化铟锡(ITO)加热元件,可在胚胎发育过程中提供最佳温度。此外,我们介绍了概念验证的片外电子接口的设计,该接口配备了机器人伺服致动器驱动平台,创新的伺服电动机致动的夹管阀和微型荧光USB显微镜。我们的结果表明,该创新型设备在有限的微流体环境中具有100%的胚胎捕获效率,同时支持长达72小时的正常胚胎发育。我们还提出了数据,该微流控系统可以很容易地应用于转基因斑马鱼Tg(flila:EGFP)系中的一组研究性抗血管生成剂的动力学分析。光学透明性和胚胎固定功能可方便地可视化响应药物处理的正在发展的脉管系统模式,而无需重新放置标本。集成的电子接口使片上实验室系统离实现完整的分析自动化更近了一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号