首页> 外文会议>MEMS, BioMEMS and bioelectronics-Materials and Devices. >Method for Achieving CMOS MEMS Accelerometers with Excellent Built-in Thermal Stability and Reduced Charge Damage
【24h】

Method for Achieving CMOS MEMS Accelerometers with Excellent Built-in Thermal Stability and Reduced Charge Damage

机译:具有出色的内置热稳定性和降低的电荷损坏的CMOS MEMS加速度计的实现方法

获取原文
获取原文并翻译 | 示例

摘要

Capacitive CMOS MEMS sensors are usually defined by anisotropic dry etching processes (R1E and DR1E). These processes can provide clean and vertical sidewall geometry. However, during the dry-etching processes, charges are added to the gate electrodes of the on-chip MOSFET's through metal pads and micro-structures, and the voltage may be raised to the level of breaking down the gate oxide, which leads to large leakage current and fails the circuit. On another hand, the thin spring beams in capacitive CMOS MEMS accelerometers suffer from in-plane curling and out-of-plane curling caused by stress gradient. Furthermore, the stress in the layers of MEMS structure is a function of temperature. Therefore, the in-plane curling and out-of-plane curling vary with temperature, leading to varying electrode coupling area in the sensing beams. This in turn causes variation in the sensitivity and the DC offset of sensors, meaning that usually the thermal stability of CMOS MEMS capacitive accelerometers is very poor. To cope with these problems, this work develops a new wafer-level post-CMOS process for fabricating thermally stable capacitive accelerometers. The resultant MEMS structures have high aspect ratio (e.g. 2-2.5 μm gaps versus 57 μm depth) and are insensitive to residual stress as well as temperature change. Excellent thermal stability was achieved intrinsically by making the crystalline Si layer in the sensors thick. Moreover, this process totally avoids the charge damage problem during the dry-etching procedure. For demonstration, an accelerometer sensor was fabricated by using the proposed process and was integrated with an on-chip sensing circuit in commercial 0.35 μm 2P4M CMOS process. High detection sensitivity of 595 mV/g and very low thermal variation of 1.68 mg/℃ were successfully achieved.
机译:电容式CMOS MEMS传感器通常由各向异性干法蚀刻工艺(R1E和DR1E)定义。这些过程可以提供干净和垂直的侧壁几何形状。但是,在干法刻蚀过程中,电荷会通过金属焊盘和微结构被添加到片上MOSFET的栅电极上,并且电压可能会升高到击穿栅氧化物的水平,从而导致栅氧化层变大。漏电流并导致电路故障。另一方面,电容式CMOS MEMS加速度计中的薄弹簧梁会受到应力梯度引起的面内卷曲和面外卷曲的影响。此外,MEMS结构层中的应力是温度的函数。因此,面内卷曲和面外卷曲随温度变化,从而导致感测束中的电极耦合面积变化。这进而导致传感器的灵敏度和DC偏移发生变化,这意味着通常CMOS MEMS电容式加速度计的热稳定性非常差。为了解决这些问题,这项工作开发了一种新的晶圆级后CMOS工艺,用于制造热稳定的电容式加速度计。所得的MEMS结构具有高的纵横比(例如2-2.5μm的间隙相对于57μm的深度),并且对残余应力以及温度变化不敏感。通过使传感器中的晶体Si层变厚,可以固有地获得出色的热稳定性。而且,该过程完全避免了干蚀刻过程中的电荷损坏问题。为了进行演示,使用了建议的工艺制造了加速度传感器,并在商业0.35μm2P4M CMOS工艺中将其与片上传感电路集成在一起。成功实现了595 mV / g的高检测灵敏度和1.68 mg /℃的极低热变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号