首页> 外文会议>Symposium on MicroElectroMechanical Systems-Materials and Devices >Method for Achieving CMOS MEMS Accelerometers with Excellent Built-in Thermal Stability and Reduced Charge Damage
【24h】

Method for Achieving CMOS MEMS Accelerometers with Excellent Built-in Thermal Stability and Reduced Charge Damage

机译:实现CMOS MEMS加速度计具有出色的内置热稳定性和减少电荷损坏的方法

获取原文
获取外文期刊封面目录资料

摘要

Capacitive CMOS MEMS sensors are usually defined by anisotropic dry etching processes (R1E and DR1E). These processes can provide clean and vertical sidewall geometry. However, during the dry-etching processes, charges are added to the gate electrodes of the on-chip MOSFET's through metal pads and micro-structures, and the voltage may be raised to the level of breaking down the gate oxide, which leads to large leakage current and fails the circuit. On another hand, the thin spring beams in capacitive CMOS MEMS accelerometers suffer from in-plane curling and out-of-plane curling caused by stress gradient. Furthermore, the stress in the layers of MEMS structure is a function of temperature. Therefore, the in-plane curling and out-of-plane curling vary with temperature, leading to varying electrode coupling area in the sensing beams. This in turn causes variation in the sensitivity and the DC offset of sensors, meaning that usually the thermal stability of CMOS MEMS capacitive accelerometers is very poor. To cope with these problems, this work develops a new wafer-level post-CMOS process for fabricating thermally stable capacitive accelerometers. The resultant MEMS structures have high aspect ratio (e.g. 2-2.5 μm gaps versus 57 μm depth) and are insensitive to residual stress as well as temperature change. Excellent thermal stability was achieved intrinsically by making the crystalline Si layer in the sensors thick. Moreover, this process totally avoids the charge damage problem during the dry-etching procedure. For demonstration, an accelerometer sensor was fabricated by using the proposed process and was integrated with an on-chip sensing circuit in commercial 0.35 μm 2P4M CMOS process. High detection sensitivity of 595 mV/g and very low thermal variation of 1.68 mg/°C were successfully achieved.
机译:电容式CMOS MEMS传感器通常由各向异性干蚀刻过程(R1e和DR1e)定义。这些过程可以提供清洁和垂直的侧壁几何形状。然而,在干蚀刻工艺期间,通过金属焊盘和微结构将电荷添加到片上MOSFET的栅极电极,并且电压可以升高到断开栅极氧化物的级别,这导致大漏电流并失效电路。在另一只手上,电容式CMOS MEMS加速度计的薄弹簧梁遭受面内卷曲和由应力梯度引起的面外卷曲。此外,MEMS结构层中的应力是温度的函数。因此,面内卷曲和平面外卷曲随温度而变化,导致感测光束中的电极耦合区域变化。这反过来导致传感器的灵敏度和直流偏移的变化,这意味着CMOS MEMS电容式加速度计的热稳定性非常差。为了应对这些问题,这项工作开发了一种新的晶片级后CMOS工艺,用于制造热稳定的电容式加速度计。得到的MEMS结构具有高纵横比(例如2-2.5μm间隙而与57μm深度),并且对残余应力和温度变化不敏感。通过使传感器中的结晶Si层厚的结晶Si层在本周上达到优异的热稳定性。此外,该过程完全避免了干蚀刻过程中的电荷损坏问题。为了演示,通过使用所提出的方法制造加速度计传感器,并与商业0.35μm2p4mcmos工艺中的片上传感电路集成。成功地实现了595mV / g的高检测灵敏度和1.68mg /℃的非常低的热变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号