首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >INVESTIGATIONS ON THE AEROTHERMAL PERFORMANCE UNCERTAINTY QUANTIFICATION OF THE TURBINE BLADE SQUEALER TIP
【24h】

INVESTIGATIONS ON THE AEROTHERMAL PERFORMANCE UNCERTAINTY QUANTIFICATION OF THE TURBINE BLADE SQUEALER TIP

机译:涡轮叶片尖端尖端尖端的空气性能不确定性定量的研究

获取原文
获取外文期刊封面目录资料

摘要

The first-stage rotor squealer tip is a kev area in the gas turbine for both aerodynamic performance and heat transfer characteristics, which should be carefully designed. However, harsh operating conditions near the rotor squealer tip can cause the geometry of the squealer tip to degrade, and manufacturing inaccuracies can also cause the squealer tip geometry to deviate from the ideal design. In this work, an uncertainty quantification (UQ) method is proposed using the non-intrusive polynomial chaos expansion method and Smolyak sparse grids. Then coupled with three dimensional (3D) Reynolds-Averaged Navier-Stokes (RANS) solutions, an uncertainty quantification procedure is carried out for aerodynamic and heat transfer performance of GE-EJ rotor blade squealer tip. A parameter sensitivity analysis using the Sobol Indice method is carried out to identify the key parameters for aerothermal performance of the squealer tip. Wherein, the inlet total temperature and the blowing ratio are considered as flow condition uncertainty parameters and tip clearance is considered as geometrical uncertainty parameters. The uncertainty analysis results show that under the influence of the uncertain geometry and operating conditions, the heat flux of squealer tip basically conforms to the normal distribution and the statistical mean value of it increased by 13.56% relative to the design value and the probability of it deviating from the design value by 10% is as high as 65.68%. The statistical average of the squealer tip film cooling effectiveness is reduced bv 29.52% compared to the design value, and the probability- of it deviating from the design value by 10% is as high as 91.83%. The result of sensitivity analysis reveals that the uncertainty of the aerodynamic characteristics of the squealer tip is almost entirely caused bv the tip clearance which accounts for 88.02% of the variance of the leakage flow rate. The inlet total temperature has almost no effect on the uncertainty of the aerodynamic performance. However, it is the dominant variable for the uncertainty of the heat transfer verformance considering that its variance indexes for tip heat flux Q_(Tip) and film cooling effectiveness η are 84.87% and 24.87% respectively. Compared with the main effects, the influence of the interaction effects among the variables on the squealer tip aerothermal performance is almost negligible.
机译:第一级转子斜纹器尖端是燃气轮机中的kev区域,用于空气动力学性能和传热特性,应经过精心设计。然而,转子斜纹器尖端附近的苛刻操作条件可能导致眯眼尖端的几何形状降低,并且制造不准确也可能导致静耳尖端几何形状偏离理想的设计。在这项工作中,使用非侵入式多项式混沌扩展方法和Smolyak稀疏网格提出了不确定度量(UQ)方法。然后与三维(3D)雷诺平均的Navier-Stokes(RANS)解决方案耦合,对GE-EJ转子刀片尖端的空气动力学和传热性能进行了不确定性的定量程序。执行使用Sobol Indice方法的参数灵敏度分析,以识别耳器尖端的空气性能的关键参数。其中,入口总温度和吹出比被认为是流量不确定性,并且尖端间隙被认为是几何不确定性参数。不确定性分析结果表明,在不确定的几何形状和操作条件的影响下,尖端的热通量基本上符合正态分布,而其统计平均值相对于设计值和概率增加了13.56%偏离设计值10%高达65.68%。与设计值相比,静脉尖端膜冷却效果的统计平均值降低了BV 29.52%,其偏离设计值10%的可能性高达91.83%。敏感性分析的结果表明,尖端尖端的空气动力学特性的不确定性几乎完全引起了泄漏流速方差88.02%的尖端间隙。入口总温度几乎没有对空气动力学性能的不确定性影响。然而,考虑到尖端热通量Q_(尖端)和薄膜冷却效果η的方差索引分别为84.87%和24.87%,所以热传递判断的优势变量分别为84.87%和24.87%。与主要效果相比,变量对静置尖端的变量之间的影响几乎可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号