首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >EFFECT OF SELF-SUSTAINED PULSATION OF COOLANT FLOW ON ADIABATIC EFFECTIVENESS AND NET HEAT FLUX REDUCTION ON A FLAT PLATE
【24h】

EFFECT OF SELF-SUSTAINED PULSATION OF COOLANT FLOW ON ADIABATIC EFFECTIVENESS AND NET HEAT FLUX REDUCTION ON A FLAT PLATE

机译:冷却剂流动对平板上的绝热效能和净热通量减小的影响

获取原文

摘要

Advanced film-cooling systems are necessary to guarantee safe working conditions of high-pressure turbine stages. A fair prediction of the inherent unsteady interaction between the main-flow and the jet of cooling air allows for correctly describing the complex flow structures arising close to the cooled region. This proves to be crucial for the design of high-performance cooling systems. Results obtained by means of an experimental campaign performed at the University of Karlsruhe are shown along with unsteady numerical data obtained for the corresponding working conditions. The experimental rig consists of an instrumented plate where the hot flow reaches Much = 0.6 close to the coolant jet exit section. The numerical campaign models the unsteady film cooling characteristics using a third-order accurate method. The ANSYS® FLUENT® software is used along with a mesh refinement procedure that allows for accurately modelling the flow field. Turbulence is modelled using the k-ω SST model. Time-averaged and time-resolved distributions of adiabatic effectiveness and Net Heat Flux Reduction are analysed to determine to what extent deterministic unsteadiness plays a role in cooling systems. It is found that coolant pulsates due to fluctuations generated by flow separation at the inlet section of the cooling channel. Visualizations of the fluctuating flow field demonstrate that coolant penetration depends on the phase of the pulsation, thus leading to periodically reduced shielding. Eventually, unsteadi- ness occurring at integral length scales does not provide enough mixing to match the experiments, thus hinting that the dominant phenomena occur at inertial length scales.
机译:先进的薄膜冷却系统是为了保证高压涡轮机级的安全工作条件。对冷却空气的主流和射流之间固有的不稳定相互作用的公平预测允许正确地描述靠近冷却区域而产生的复杂流动结构。这证明对高性能冷却系统的设计至关重要。通过在Karlsruhe大学进行的实验活动获得的结果以及对应于相应的工作条件获得的不稳定数值数据。实验装置由仪表板组成,其中热流达到大约0.6靠近冷却剂射流出口部分。数值运动使用三阶精确方法模拟非定常膜冷却特性。 ANSYS®Fluent®软件与网格精制过程一起使用,允许准确地建模流场。湍流采用K-ΩSST模型进行建模。分析了绝热有效性和净热通量减少的时间平均和时间分辨分布,以确定确定性化的不稳定性在多大程度上在冷却系统中起作用。发现冷却剂由于通过冷却通道的入口部分处的流动分离而产生的波动而脉动。波动流场的可视化表明冷却剂渗透取决于脉动的相位,从而导致周期性地减少屏蔽。最终,在整体长度尺度上发生的不稳定不提供足够的混合以匹配实验,因此暗示了主导现象处于惯性长度尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号