首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >THE INFLUENCE OF ELEMENT THERMAL CONDUCTIVITY, SHAPE, AND DENSITY ON HEAT TRANSFER IN A ROUGH WALL TURBULENT BOUNDARY LAYER WITH STRONG PRESSURE GRADIENTS
【24h】

THE INFLUENCE OF ELEMENT THERMAL CONDUCTIVITY, SHAPE, AND DENSITY ON HEAT TRANSFER IN A ROUGH WALL TURBULENT BOUNDARY LAYER WITH STRONG PRESSURE GRADIENTS

机译:元件导热率,形状和密度对具有强大压力梯度粗糙壁湍流边界层传热的影响

获取原文
获取外文期刊封面目录资料

摘要

Formation mechanisms for turbine roughness are manifold, including erosion, corrosion, deposition, and spoliation or more recently additive manufacturing processes. Consequently, the resulting surfaces differ remarkably not only in roughness shape, height, and density, but also in element thermal conductivity. Because the roughness elements extend into the boundary layer, their temperature distribution has a direct influence on the thermal boundary layer and thus on the resulting convective heat transfer. In the current study, heat transfer distributions along a flat plate with more than 20 deterministic rough surface topographies that differ in element eccentricity, height and density are measured. For each surface roughness, measurements are conducted using two different element thermal conductivities (0.2 W/(mK) and 30 W/(mK)), two pressure distributions, four Reynolds numbers between 3 × 10~5 and 7.5 × 10~5 and various inlet turbulence intensities in the range of 1.5% to 8%. The pressure distributions resemble a typical suction and pressure side, respectively. Results show a heat transfer increase of up to 60% for the high thermal conductivity surfaces and up to 50 %for the low conductivity ones. While heat transfer on the high conductivity surfaces is always higher than on the low conductivity ones, the difference becomes smaller with decreasing element density.
机译:用于涡轮机的粗糙度的形成机制是多方面的,包括侵蚀,腐蚀,沉积和掠夺或多个最近添加剂制造工艺。因此,所得的表面显着地不同,不仅在粗糙度形状,高度和密度,而且在元件的热导率。因为粗糙度元件延伸进入边界层,它们的温度分布具有热边界层上,从而对所得到的对流热传递有直接影响。在目前的研究中,沿着与在元件偏心相差超过20个确定性粗糙的表面形貌的平板传热分布,高度和密度测量。对于每一个的表面粗糙度,测量是使用两个不同的元件的热导率(0.2W /(MK)和30 W /(MK)),两个压力分布,3×10 -5和7.5×10 -5和之间的四个雷诺数进行各个入口湍流强度在1.5%至8%的范围内。的压力分布分别类似于典型吸力和压力侧。结果显示高达60%的高导热性表面的热传递增加和高达50%的低导电性的。而高导电性表面上的热传递总是比在低导电性者越高,差变得随元件密度小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号