首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >COMPARISON OF TABULATED AND COMPLEX CHEMISTRY TURBULENT-CHEMISTRY INTERACTION MODELS WITH HIGH FIDELITY LARGE EDDY SIMULATIONS ON HYDROGEN FLAMES
【24h】

COMPARISON OF TABULATED AND COMPLEX CHEMISTRY TURBULENT-CHEMISTRY INTERACTION MODELS WITH HIGH FIDELITY LARGE EDDY SIMULATIONS ON HYDROGEN FLAMES

机译:制表和复杂化学湍流 - 化学相互作用与高保真大型涡流模拟的比较

获取原文

摘要

Hydrogen micromix combustion is a promising concept to reduce the environmental impact of both aero and land-based gas turbines by delivering carbon-free and ultra-low-NO_x combustion without the risk of autoignition or flashback. The EU H2020 ENABLEH2 project aims to demonstrate the feasibility of such a switch to hydrogen for civil aviation, within which the micromix combustion, as a key enabling technology, will be matured to TRL3. The micromix combustor comprises thousands of small diffusion flames where air and fuel are mixed in a crossflow pattern. This technology is based on the idea of minimizing the scale of mixing to maximize mixing intensity. The high-reactivity and wide flammability limits of hydrogen in a micromix combustor can produce short and low-temperature small diffusion flames in lean overall equivalence ratios. In order to mature the hydrogen micromix combustion technology, high quality numerical simulations of the resulting short, thin and highly dynamic hydrogen flames, as well as predictions of combustion species, are essential. In fact, one of the biggest challenges for current CFD has been to accurately model this combustion phenomenon. The Flamelet Generated Manifold (FGM) model is a combustion model that has been used in the past decades for its predicting capabilities and its low computational cost due to its reliance on pre-tabulated combustion chemistry, instead of directly integrating detailed chemistry mechanisms. However, this trade for a lower computational cost may have an impact on the solution, especially when considering a fuel such as Hydrogen. Therefore, it is necessary to compare the FGM model to another combustion modelling approach which uses more detailed complex chemistry. The main focus of this paper then, is to compare the flame characteristics in terms of position, thickness, length, temperature and emissions obtained from LES simulations done with the FGM model, to the results obtained with more complex chemistry models, for hydrogen micromix flames. This will be done using STAR-CCM+ to determine the most suitable numerical approach required for the design of injection systems for ultra-low NO_x.
机译:氢微胶质燃烧是一种有希望的概念,通过提供无碳和超低NO_X燃烧而没有自燃或闪回的风险来减少Aero和陆基燃气轮机的环境影响。 EU H2020 EnableH2项目旨在证明这种切换到用于民用航空的开关的可行性,其中MicroMix燃烧作为一个关键的能力技术,将成熟到TRL3。 MicroMix燃烧器包括成千上万的小扩散火焰,其中空气和燃料在十字流图案中混合。该技术基于最小化混合规模以使混合强度最大限度地提高的思想。 MicroMix燃烧器中氢的高反应性和宽可燃性限制可以产生贫贫的整体等效比率的短和低温小扩散火焰。为了成熟氢微肿瘤燃烧技术,所产生的短,薄且高度动态的氢火焰的高质量数值模拟,以及燃烧物种的预测是必不可少的。事实上,目前CFD的最大挑战之一是准确地模拟这种燃烧现象。小火焰产生歧管(FGM)模式已在其预测能力和低计算成本在过去几十年被使用,由于其对前列燃烧化学的依赖燃烧模型,而不是直接集成详细的化学机制。然而,该交易较低的计算成本可能对解决方案产生影响,特别是在考虑诸如氢的燃料时。因此,有必要将FGM模型与另一种使用更详细的复杂化学的燃烧建模方法进行比较。本文的主要焦点然后,是在用FGM模型完成的LES模拟中获得的位置,厚度,长度,温度和排放来比较火焰特性,以通过更复杂的化学模型获得的结果,用于氢微胶质火焰。这将使用Star-CCM +来确定用于超低NO_X的注射系统所需的最合适的数值方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号