...
首页> 外文期刊>Flow, Turbulence and Combustion >Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence–Chemistry Interaction
【24h】

Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence–Chemistry Interaction

机译:湍流-化学相互作用中使用涡流消散概念模型的代尔夫特喷气热气流(DJHC)火焰数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we report results of a numerical investigation of turbulent natural gas combustion for a jet in a coflow of lean combustion products in the Delft-Jet-in-Hot-Coflow (DJHC) burner which emulates MILD (Moderate and Intense Low Oxygen Dilution) combustion behavior. The focus is on assessing the performance of the Eddy Dissipation Concept (EDC) model in combination with two-equation turbulence models and chemical kinetic schemes for about 20 species (Correa mechanism and DRM19 mechanism) by comparing predictions with experimental measurements. We study two different flame conditions corresponding to two different oxygen levels (7.6% and 10.9% by mass) in the hot coflow, and for two jet Reynolds number (Re = 4,100 and Re = 8,800). The mean velocity and turbulent kinetic energy predicted by different turbulence models are in good agreement with data without exhibiting large differences among the model predictions. The realizable k-ε model exhibits better performance in the prediction of entrainment. The EDC combustion model predicts too early ignition leading to a peak in the radial mean temperature profile at too low axial distance. However the model correctly predicts the experimentally observed decreasing trend of lift-off height with jet Reynolds number. A detailed analysis of the mean reaction rate of the EDC model is made and as possible cause for the deviations between model predictions and experiments a low turbulent Reynolds number effect is identified. Using modified EDC model constants prediction of too early ignition can be avoided. The results are weakly sensitive to the sub-model for laminar viscosity and laminar diffusion fluxes.
机译:在本文中,我们报告了在代尔夫特喷气热气流(DJHC)燃烧器中的稀薄燃烧产物并流中对射流进行湍流天然气燃烧的数值研究结果,该燃烧器模拟了MILD(中度和强烈的低氧)稀释)燃烧行为。重点是通过将预测值与实验测量值进行比较,评估涡流消散概念(EDC)模型与两方程湍流模型和约20种物种(Correa机理和DRM19机理)的化学动力学方案相结合的性能。我们研究了两种不同的火焰条件,分别对应于热气流中两种不同的氧气含量(按质量计分别为7.6%和10.9%),以及两种喷气雷诺数(Re = 4,100和Re = 8,800)。不同湍流模型预测的平均速度和湍动能与数据吻合良好,模型预测之间没有较大差异。可实现的k-ε模型在夹带预测中表现出更好的性能。 EDC燃烧模型预测点火太早会导致在轴向距离太短时径向平均温度曲线达到峰值。然而,该模型正确地预测了实验观察到的随射流雷诺数的升空高度下降趋势。对EDC模型的平均反应速率进行了详细分析,并确定了模型预测和实验之间存在偏差的可能原因,从而确定了低湍流雷诺数效应。使用改进的EDC模型常数,可以避免过早点火的预测。结果对子模型的层流粘度和层流通量不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号