首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >EXPERIMENTS WITH A ROTOR-HYBRID GAS BEARING SYSTEM UNDERGOING MANEUVER LOADS FROM ITS BASE SUPPORT
【24h】

EXPERIMENTS WITH A ROTOR-HYBRID GAS BEARING SYSTEM UNDERGOING MANEUVER LOADS FROM ITS BASE SUPPORT

机译:使用基座支撑的转子混合气体轴承系统进行实验

获取原文

摘要

Gas bearings enable microturbomachinery (MTM) with a large power to weight ratio, low part count and nearly frictionless motion, thus resulting in systems operating over extended maintenance intervals and with improved fuel efficiency. Envisioned oil-free vehicle transportation systems implementing gas bearings range from small size gas turbines, to unmanned aerial vehicles, to turbochargers (TC), and more to come. In these vehicles, base or support transient displacements transmit forces exciting the rotor-bearing system; hence, the need to characterize system integrity under stringent operating conditions. This paper reports experiments demonstrating the ability of a hybrid gas bearing-rotor system to withstand maneuver actions that suddenly remove the ground support. The test rig consists of a rigid motor-rotor, supported on tilting pad hybrid gas bearings supplied with pressurized air. The rotor is housed in a thick steel casing that is attached to a rigid base plate. The whole test rig, hangs from a crane; two steel cables connect to one side of the base and a nylon webbing attaches to the other side of the base. The other end of the webbing ties to a release mechanism, which when released, frees one side of the rig base. Suddenly, the whole test rig rotates and displaces downwards while the tensions in the taut cables rapidly increase and pull the test rig as it swings back and forth. The crane support enables two release maneuvers; one turns the rig ~90°, and the other flips it 180°, both events occurring while the rotor spins at 70 krpm (surface speed 105 m/s). The measured rotor displacements relative to the casing demonstrate a momentary increase in motion amplitude, up to ~1.15 mm since the bearings also displace, along with a maximum casing deceleration of ~7 g when the cables stop the rig fall. The measurements show the rotor response is free of sub synchronous whirl frequencies that could evidence a rotor dynamic instability. Very low frequency motions denote the swing frequency of the hanging rig and jerk motions from the crane lifting and bouncing when the rig is at its lowest vertical position. In one instance, power to the motor unexpectedly interrupted and the rotor underwent an unplanned shaft speed coastdown. In spite of the large displacements recorded, the rotor survived both events. It continues to operate to this day. The experiments demonstrate that the hybrid gas bearing system could withstand large amplitude rotor excursions. The measurements provide a novel method for testing gas bearings, as the induced excitations are multidirectional, while the test rig encounters a short period of free falling, followed by a quick deceleration with large forces. A simple kinetics model of the test rig drop produces peak decelerations similar in magnitude to those measured.
机译:燃气轴承使微型管道机械(MTM)具有大功率的重量比,低零件数和几乎无摩擦的运动,因此导致系统经过延长的维护间隔和提高燃料效率。设想的无油车辆运输系统,实现气体轴承的范围从小尺寸的燃气轮机,到无人机车辆,到涡轮增压器(TC),以及更多的来源。在这些车辆中,底座或支撑瞬态位移传递力激励转子系统;因此,需要在严格的操作条件下表征系统完整性。本文报告了实验,证明了混合气体轴承转子系统承受突然去除地面支撑的机动动作的能力。试验台由刚性电动机转子组成,支撑在提供加压空气的倾斜垫混合气体轴承上。转子容纳在厚钢壳体中,该厚钢壳体附接到刚性底板。整个试验台,悬挂在起重机上;两根钢电缆连接到底座的一侧,尼龙织带连接到底座的另一侧。织带连接到释放机构的另一端,当释放时,释放钻机基座的一侧。突然间,整个试验台向下旋转并移位,而拉紧电缆的张力迅速增加,并在其来回摇摆时拉动试验台。起重机支持使两个释放机动;一个人旋转〜90°,另一个翻转它180°,两种事件都发生在转子旋转70 krpm(表面速度105 m / s)时。相对于壳体的测量转子位移证明了运动幅度的瞬时增加,由于轴承也取代,并且当电缆停止钻机掉落时,轴承的最大套管减速以及〜7g的最大套管减速。测量结果显示转子响应不含副同步旋转频率,可以证明转子动态稳定性。当钻机处于最低垂直位置时,非常低频动作表示悬挂式钻机的摆动频率和从起重机提升和弹跳的动作。在一个实例中,电动机的电源意外中断,转子经历了无计划的轴速度的速度。尽管录制了大型位移,转子均幸存了两个事件。它继续运作到今天。实验表明,混合气体轴承系统可以承受大的幅度转子偏移。测量提供了一种用于测试气体轴承的新方法,因为诱导的激励是多向的,而试验台遇到短时间的自由落下,然后用大力快速减速。试验台下降的简单动力学模型产生与测量的幅度相似的峰减速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号