首页> 外文会议>AIAA aviation forum >Large-eddy / Reynolds-Averaged Navier-Stokes Simulation of Cavity-Stabilized Ethylene Combustion
【24h】

Large-eddy / Reynolds-Averaged Navier-Stokes Simulation of Cavity-Stabilized Ethylene Combustion

机译:大涡流/雷诺平均海军 - Stokes腔稳定乙烯燃烧模拟

获取原文

摘要

In this study, a hybrid large-eddy / Reynolds-averaged Navier-Stokes method is used to simulate ethylene combustion inside a cavity flameholder. The cavity flameholder considered is Configuration E of University of Virginia's scramjet combustion facility, which consists of a Mach 2 inlet nozzle, a constant-area isolator, a combustor, and an extender, through which the exhaust gases are vented to the atmosphere. To increase the fuel-residence time, a cavity is fitted along the upper wall inside the combustor section of the flameholder. The configuration has the capability of injecting ethylene through a series of ports located upstream of and inside the cavity along the upper wall the combustor. In the simulations, ethylene combustion is modeled using a 22-species ethylene oxidation mechanism. Also, a synthetic eddy method is used to introduce turbulence at the inflow plane of the flameholder. For an equivalence ratio of 0.15, a cavity stabilized flame is predicted. Results predicted compare well with the experimental data, especially, water mole-fraction distribution and pressure along the upper wall of the combustor. In general, the predictions show excellent agreement with experimental data within the cavity region; further downstream, experimental results suggest that the heat release is over-predicted in the simulations. Analysis of the flame structure predicted by the LES/RANS method indicates that the flame propagates into a stoichiometric to fuel-rich mixture near the cavity. Flame angles captured in the simulation are in close agreement with those predicted through classical premixed turbulent flame-speed estimates. Further downstream, the flame structure is non-premixed in character, and near complete conversion of CO to CO2 is observed by the time the flame reaches the combustor exit.
机译:在该研究中,使用杂交大涡流/雷诺平均普通的Navier-Stokes方法来模拟腔体持有者内的乙烯燃烧。考虑的腔体持有者是弗吉尼亚大学的配置E的Cullamjet燃烧设施,由马赫2入口喷嘴,恒定区域隔离器,燃烧器和延伸器组成,废气通向大气中的延伸器。为了增加燃料停留时间,腔沿着燃料部分的燃烧器部分内的上壁装配。该构造具有通过位于燃烧器上壁的上游和腔内的上游的一系列端口注入乙烯的能力。在模拟中,使用22种乙烯氧化机制模拟乙烯燃烧。而且,合成涡流方法用于引入燃料持续物的流入平面上的湍流。对于等效比为0.15,预测腔稳定的火焰。结果预测与实验数据相比,特别是水鼹鼠分配和沿燃烧器的上壁的压力相比。通常,预测表现出与腔区域内的实验数据的良好协议;进一步下游,实验结果表明,在模拟中过度预测了热释放。 LES / RAN方法预测的火焰结构的分析表明,火焰传播成化学计量与腔附近的富含燃料的混合物。在模拟中捕获的火焰角度与通过经典预混湍流火焰速度估计预测的那些达成密切一致。进一步下游,火焰结构是非预混合的特征,并且通过火焰到达燃烧器出口的时间观察到CO到CO2的附近完全转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号