首页> 外文会议> >Large-eddy / Reynolds-Averaged Navier-Stokes Simulation of Cavity-Stabilized Ethylene Combustion
【24h】

Large-eddy / Reynolds-Averaged Navier-Stokes Simulation of Cavity-Stabilized Ethylene Combustion

机译:腔稳定型乙烯燃烧的大涡/雷诺平均Navier-Stokes模拟

获取原文

摘要

In this study, a hybrid large-eddy / Reynolds-averaged Navier-Stokes method is used to simulate ethylene combustion inside a cavity flameholder. The cavity flameholder considered is Configuration E of University of Virginia's scramjet combustion facility, which consists of a Mach 2 inlet nozzle, a constant-area isolator, a combustor, and an extender, through which the exhaust gases are vented to the atmosphere. To increase the fuel-residence time, a cavity is fitted along the upper wall inside the combustor section of the flameholder. The configuration has the capability of injecting ethylene through a series of ports located upstream of and inside the cavity along the upper wall the combustor. In the simulations, ethylene combustion is modeled using a 22-species ethylene oxidation mechanism. Also, a synthetic eddy method is used to introduce turbulence at the inflow plane of the flameholder. For an equivalence ratio of 0.15, a cavity stabilized flame is predicted. Results predicted compare well with the experimental data, especially, water mole-fraction distribution and pressure along the upper wall of the combustor. In general, the predictions show excellent agreement with experimental data within the cavity region; further downstream, experimental results suggest that the heat release is over-predicted in the simulations. Analysis of the flame structure predicted by the LES/RANS method indicates that the flame propagates into a stoichiometric to fuel-rich mixture near the cavity. Flame angles captured in the simulation are in close agreement with those predicted through classical premixed turbulent flame-speed estimates. Further downstream, the flame structure is non-premixed in character, and near complete conversion of CO to CO2 is observed by the time the flame reaches the combustor exit.
机译:在这项研究中,混合的大涡/雷诺平均Navier-Stokes方法用于模拟型腔火焰保持器内部的乙烯燃烧。所考虑的型腔火焰保持器是弗吉尼亚大学超燃冲压燃烧设备的配置E,该设备由2马赫进气口喷嘴,恒定面积隔离器,燃烧器和增量器组成,废气通过该扩展器排放到大气中。为了增加燃料滞留时间,沿着火焰保持器燃烧室部分内的上壁安装了一个空腔。该构造具有通过沿着燃烧器的上壁位于腔的上游和内部的一系列端口注入乙烯的能力。在模拟中,使用22种乙烯氧化机制对乙烯燃烧进行建模。同样,合成涡流方法用于在火焰保持器的流入平面处引入湍流。当量比为0.15时,可预测腔内稳定火焰。预测的结果与实验数据相吻合,特别是沿燃烧室上壁的水摩尔分数分布和压力。总的来说,这些预测显示出与腔体区域内的实验数据非常吻合。在更下游,实验结果表明在模拟中热量释放被过度预测。通过LES / RANS方法预测的火焰结构分析表明,火焰在腔体附近传播到化学计量比至富燃料混合气。模拟中捕获的火焰角与通过经典预混湍流火焰速度估计值预测的火焰角非常一致。在更下游,火焰结构没有进行预混合,在火焰到达燃烧室出口时,观察到CO几乎完全转化为CO2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号