首页> 外文期刊>Combustion and Flame >Large-eddy/Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion
【24h】

Large-eddy/Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion

机译:腔稳定乙烯燃烧的大涡/雷诺平均Navier-Stokes模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, a hybrid large-eddy/Reynolds-averaged Navier-Stokes (LES/RANS) method is used to simulate ethylene combustion inside a cavity flameholder. The cavity flameholder considered is Configuration E of University of Virginia's Scramjet Combustion Facility, which consists of a Mach 2 inlet nozzle, a constant-area isolator, a combustor, and an extender, through which the exhaust gases are vented to the atmosphere. To increase the fuel-residence time, a cavity is fitted along the upper wall inside the combustor section of the flameholder. The configuration has the capability of injecting ethylene through a series of ports located upstream of and inside the cavity along the upper wall the combustor. In the simulations, ethylene combustion is modeled using a 22-species ethylene oxidation mechanism. Also, a synthetic eddy method is used to introduce turbulence at the inflow plane of the flameholder. For an equivalence ratio of 0.15, a cavity stabilized flame is predicted. Predictions are compared with line-of-sight temperature, water column-density, water mole-fraction, CO column-density, and CO2 column-density measurements at three stations within and downstream of the cavity. Agreement with experiment is generally good within the cavity. Downstream of the cavity, the simulations predict higher temperatures near the wall. Analysis of the flame structure predicted by the LES/RANS method indicates that the flame propagates into a stoichiometric to fuel-rich mixture near the cavity. Flame angles captured in the simulation are in close agreement with those predicted through classical premixed turbulent flame-speed estimates. Further downstream, the flame structure is non-premixed in character, and near complete conversion of CO to CO2 is observed by the time the flame reaches the combustor exit. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在这项研究中,使用大涡/雷诺平均Navier-Stokes(LES / RANS)混合方法模拟腔体火焰保持器内部的乙烯燃烧。所考虑的型腔火焰保持器是弗吉尼亚大学Scramjet燃烧设施的Configuration E,它由2马赫的进气喷嘴,恒定面积的隔离器,燃烧器和增量器组成,废气通过该扩展器排放到大气中。为了增加燃料滞留时间,沿着火焰保持器燃烧室部分内的上壁安装了一个空腔。该构造具有沿着燃烧器的上壁通过位于腔的上游和内部的一系列端口注入乙烯的能力。在模拟中,使用22种乙烯氧化机制对乙烯燃烧进行建模。同样,合成涡流方法用于在火焰保持器的流入平面处引入湍流。当当量比为0.15时,可预测腔稳定火焰。将预测值与腔体内部和下游三个站点的视线温度,水柱密度,水摩尔分数,CO柱密度和CO2柱密度测量值进行比较。腔内与实验的吻合度一般较好。在空腔的下游,模拟预测壁附近的温度更高。通过LES / RANS方法预测的火焰结构分析表明,火焰在腔体附近传播到化学计量比至富燃料混合气。模拟中捕获的火焰角度与通过经典预混湍流火焰速度估算值预测的火焰角度非常一致。在更下游,火焰结构未进行预混合,在火焰到达燃烧室出口时,观察到CO几乎完全转化为CO2。 (C)2014年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号