首页> 外文会议>FISITA World Automotive Congress >DEVELOPMENT OF FUTURE ENGINES USING COMBUSTION DIAGNOSTICS, COMPUTATIONAL FLUID DYNAMICS, AND ADVANCED OPTICAL DIAGNOSTICS
【24h】

DEVELOPMENT OF FUTURE ENGINES USING COMBUSTION DIAGNOSTICS, COMPUTATIONAL FLUID DYNAMICS, AND ADVANCED OPTICAL DIAGNOSTICS

机译:使用燃烧诊断,计算流体动力学和高级光学诊断开发未来引擎

获取原文

摘要

A global renaissance in advancements of automotive propulsion system technology and resulting portfolio complexity is in full swing. Significant complexity is being driven by the "march to zero" in noxious emissions and our drive towards the upper limit of thermodynamic efficiency. GM is attacking this challenge with a three-pronged technical strategy which encompasses improved gasoline and diesel engines, hybridisation and hydrogen fuel cell vehicles. This has resulted in an exponential increase in the research and development requirements to support this portfolio. Key development tools, namely combustion diagnostics, computational fluid dynamics (CFD) and optical diagnostics, play a critical role in the successful development of our current and future portfolio and are applied synergistically. The focus in this paper is on application examples of these tools to develop two of the most promising gasoline-engine technologies, namely spray-guided spark ignition direct injection (SG-SIDI) and homogeneous charge compression ignition (HCCI). Stratified combustion in SG-SIDI engines has been investigated using detailed CFD modelling and high-speed imaging, cylinder pressure analysis and spark spectroscopy. This has led to fundamental understanding of the complex interaction of the fuel spray with the spark plug as well as the bulk mixture preparation and combustion. HCCI concepts, while also requiring the fluid dynamics to be treated accurately, place a premium on the detailed chemistry and ultimately require a fully-coupled zonal approach for simulation. We have combined optical and combustion diagnostics to successfully develop stratified ignition strategies for low-load HCCI. The interplay and combination of combustion and advanced optical diagnostics with CFD allows fundamental, quantitative understanding of in-cylinder processes to be distilled for the key technologies of future engines.
机译:全球文艺复兴在汽车推进系统技术方面的进步,并导致组合复杂性充满了全面展开。在有毒排放中的“3月至零”和我们朝着热力学效率的上限的驱动,受到重大复杂性。通用汽车正在通过三管齐地的技术战略攻击这一挑战,这些策略包括改进的汽油和柴油发动机,杂交和氢气燃料电池。这导致了对支持这一投资组合的研究和开发要求的指数增加。关键开发工具,即燃烧诊断,计算流体动力学(CFD)和光学诊断,在我们当前和未来投资组合的成功开发中发挥着关键作用,并在协同作用地应用。本文的重点是在这些工具的应用示例上,开发出最有前途的汽油发动机技术,即喷射引导的火花点火直喷(SG-SIDI)和均匀电荷压缩点火(HCCI)。使用详细的CFD建模和高速成像,气缸压力分析和火花光谱研究了SG-SIDI发动机中的分层燃烧。这导致了对燃料喷雾与火花塞的复杂相互作用以及散装混合物制备和燃烧的基础知识。 HCCI概念,同时还需要准确地对待流体动力学,在详细的化学上放置溢价,并最终需要完全耦合的划分方法进行仿真。我们组合了光学和燃烧诊断,成功地为低负荷HCCI进行了分层点火策略。 CFD的燃烧和高级光学诊断的相互作用和组合允许为未来引擎的关键技术蒸馏出缸内过程的基本,定量理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号