首页> 外文会议>International Symposium on Space Terahertz Technology >The Terahertz Intensity Mapper (TIM): an Imaging Spectrometer for Galaxy Evolution Studies at High-Redshift
【24h】

The Terahertz Intensity Mapper (TIM): an Imaging Spectrometer for Galaxy Evolution Studies at High-Redshift

机译:太赫兹强度映射器(TIM):高射频的Galaxy Envolution研究的成像光谱仪

获取原文

摘要

Understanding the formation and evolution of galaxies over cosmic time is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last 14 billion years, and dust obscured star forming galaxies (DSFGs) are a crucial component of this evolution. A variety of important, bright, and unextincted diagnostic lines are present in the far-infrared (FIR) which can provide crucial insight into the physical conditions of galaxy evolution, including the instantaneous star formation rate, the effect of AGN feedback on star formation, the mass function of the stars, metallicities, and the spectrum of their ionizing radiation. FIR spectroscopy is technically difficult but scientifically crucial. The FIR waveband is impossible to observe from the ground, and spans a crucial gap in the spectroscopic coverage between the Atacama Large Millimeter/submillimeter Array (ALMA) in the sub/mm, and the James Webb Space Telescope (JWST) in the mid-IR. Stratospheric balloons offer a platform which can outperform current instrument sensitivities and are the only way to provide large-area, wide bandwidth spatial/spectral mapping at FIR wavelengths. NASA recently selected TIM, the Terahertz Intensity Mapper, with the goal of demonstrating the key technical milestones necessary for FIR spectroscopy. TIM will provide a technological stepping stone to the future space-borne instrumentation such as the Origins Space Telescope (OST, formerly the Far-IR Surveyor) or a Probe mission. TIM will address the two key technical issues necessary to achieve this: 1. Low-emissivity, high-throughput telescope and spectrometer optics for the FIR; 2. Background-limited detectors in large format arrays, scalable to >10,000 pixels. We will do this by constructing a integral-field spectrometer from 240 - 420 microns with 3600 kinetic-inductance detectors (KIDs) coupled to a 2-meter low-emissivity carbon fiber telescope. In addition to the development and demonstration of crucial technologies for the FIR, TIM will perform groundbreaking science. We will survey two fields centered on GOODS-S and the South Pole Telescope Deep Field, both of which have rich ancillary data. Scientifically, we will: 1. Obtain spectroscopic line detections of ~100 galaxies in the atomic fine structure lines [CII] (158 microns) (at 0.5
机译:了解宇宙时间的星系的形成和演变是今天天体物理学和宇宙学的最重要目标之一。宇宙星形成率在过去的140亿年内经历了戏剧性的演变,并且尘埃遮挡了星系的星系(DSFG)是这一进化的重要组成部分。在远红外(FIR)中存在各种重要,明亮和未典作的诊断线,这可以为Galaxy Evolution的物理状况提供关键洞察,包括瞬时星形成率,Agn反馈对星形成的影响,恒星,金属性和它们电离辐射的谱的质量函数。 FIR光谱技术在技术上困难但科学上至关重要。 FIR波段无法从地面观察,并跨越亚卡山大毫米/亚麻/亚麻阵列(ALMA)中的光谱覆盖范围的关键差距,中间的James Webb空间望远镜(JWST)之间的光谱覆盖范围IR。 Stratospheric Balloons提供了一个能够优于当前仪器敏感性的平台,并且是在FIR波长下提供大面积,宽带宽空间/光谱映射的唯一方法。 NASA最近选择了Tim,Terahertz强度映射器,目的是展示FIR光谱所需的关键技术里程碑。蒂姆将为未来的空间触摸镜(OST,以前是FAR-IR测量师)或探针使命提供技术步进石。蒂姆将解决实现这一目标所需的两个关键技术问题:1。低发射率,高通量望远镜和冷杉的光谱仪光学器件; 2.背景限制探测器在大型阵列中,可扩展至> 10,000像素。我们将通过使用3600动感探测器(儿童)的240-420微米构建与2米低发射碳纤维望远镜的3600动感探测器(儿童)来实现这一点。除了开发和展示FIR的关键技术,蒂姆将执行突破性科学。我们将调查以商品-s和南极望远镜深场为中心的两个田地调查,两者都有丰富的辅助数据。科学,我们将:1.获取〜100个星系的光谱线检测在原子精细结构线[CII](158微米)(在0.5

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号