首页> 外文会议>SPE/DOE Improved Oil Recovery Symposium >Impact of Phase Behavior Modeling on In-Situ Combustion Process Performance
【24h】

Impact of Phase Behavior Modeling on In-Situ Combustion Process Performance

机译:相位行为建模对原位燃烧过程性能的影响

获取原文

摘要

To facilitate the study of reactive-compositional porous media processes we develop a virtual kinetic cell (single-cell model) as well as a virtual combustion tube (one-dimensional model). Both models are fully compositional based on an equation of state. In this work, we apply the models to analyze phase behavior sensitivity for in-situ combustion, a thermal oil recovery process. For the one-dimensional model we first conduct sensitivity analyses to numerical discretization errors and provide grid density guidelines for proper resolution of in-situ combustion behavior. A critical condition for success of in-situ combustion processes is the formation and sustained propagation of a high-temperature combustion front. Using the models developed we study the impact of phase behavior on ignition/extinction dynamics as a function of the operating conditions. We show that when operating close to ignition/extinction branches, a change of phase behavior model is likely to shift the system from a state of ignition to a state of extinction or vice versa. For both the rigorous equation of state based and a simplified, but commonly used, K-value based phase behavior description we identify areas of operating conditions which lead to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state based approach.
机译:为了促进反应性组合物多孔介质过程的研究,我们开发虚拟动力学电池(单电池模型)以及虚拟燃烧管(一维模型)。两种模型都是基于状态方程的完全组成。在这项工作中,我们应用模型来分析原位燃烧的相位行为敏感性,热油回收过程。对于一维模型,我们首先对数值离散化误差进行敏感性分析,并提供网格密度指南,以适当分辨出原位燃烧行为。成功的原位燃烧过程的临界条件是高温燃烧前沿的形成和持续传播。使用模型开发的我们研究了相位行为对点火/消灭动态的影响,作为操作条件的函数。我们表明,当靠近点火/消光分支时,相位行为模型的变化可能会将系统从点火状态转换到灭绝状态,反之亦然。对于基于状态的严格方程和简化但常用,基于K值的相位行为描述,我们识别导致点火的操作条件区域。对于特定的油,我们表明,与基于状态的方法的等式相比,简化的方法将所需的空气喷射速率高估为持续前进的前进速率17%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号