首页> 外文会议>International Conference on Computational Science and Its Applications >Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
【24h】

Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling

机译:具有神经网络代理建模的迭代全局敏感性分析算法

获取原文

摘要

Global sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based model in this work. This introduces the additional challenge of finding the minimum number of training data samples required to train the NNs accurately. In this work, a new method is introduced to accurately quantify the GSA values by iterating over both the number of samples required to train the NNs, terminated using an outer-loop sensitivity convergence criteria, and the number of model responses required to calculate the GSA, terminated with an inner-loop sensitivity convergence criteria. The iterative surrogate-based GSA guarantees converged values for the Sobol' indices and, at the same time, alleviates the specification of arbitrary accuracy metrics for the surrogate model. The proposed method is demonstrated in two cases, namely, an eight-variable borehole function and a three-variable nondestructive testing (NDT) case. For the borehole function, both the first- and total-order Sobol' indices required 200 and 10~5 data points to terminate on the outer- and inner-loop sensitivity convergence criteria, respectively. For the NDT case, these values were 100 for both first- and total-order indices for the outer-loop sensitivity convergence, and 10~6 and 10~3 for the inner-loop sensitivity convergence, respectively, for the first- and total-order indices, on the inner-loop sensitivity convergence. The differences of the proposed method with GSA on the true functions are less than 3% in the analytical case and less than 10% in the physics-based case (where the large error comes from small Sobol' indices).
机译:全局敏感性分析(GSA)是一种用于量化输入参数对基于物理系统输出的效果的方法。由于每个基于物理的模型的高计算成本,大量输入参数的高计算成本,并且需要执行重复模型评估,执行GSA可能是具有挑战性的。为了减少这种成本,神经网络(NNS)用于取代这项工作中的昂贵物理的模型。这介绍了找到准确地培训NN所需的最小培训数据样本数量的额外挑战。在这项工作中,引入了一种新方法,以通过迭代培训NNS所需的样本数量来准确地量化GSA值,使用外环灵敏度收敛标准终止,以及计算GSA所需的模型响应的数量,终止内部环路灵敏度收敛标准。基于迭代代理的GSA保证了Sobol'指数的融合值,同时缓解了代理模型的任意精度度量的规范。在两种情况下证明了所提出的方法,即八种变量的钻孔功能和三种无损检测(NDT)案例。对于钻孔函数,所需的第一和总秩序的索尔索尔指数都需要200和10〜5个数据点分别终止于外环和内圈灵敏度收敛标准上。对于NDT案例,对于外环灵敏度收敛的第一和总订单指标,这些值分别为10〜6和10〜3分别为第一和总,为内部环路灵敏度收敛的10〜6和10〜3。 -Order索引,在内圈灵敏度融合中。所提出的方法对GSA对真实函数的差异在分析案例中小于3%,并且在基于物理的情况下小于10%(其中大错误来自小型Sobol'指数)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号