首页> 外文会议>International Conference on Computational Science and Its Applications >Timeseries Based Deep Hybrid Transfer Learning Frameworks: A Case Study of Electric Vehicle Energy Prediction
【24h】

Timeseries Based Deep Hybrid Transfer Learning Frameworks: A Case Study of Electric Vehicle Energy Prediction

机译:基于时间的深度混合转移学习框架:电动车辆能量预测的案例研究

获取原文

摘要

The problem of limited labelled data availability causes under-fitting, which negatively affects the development of accurate time series based prediction models. Two-hybrid deep neural network architectures, namely the CNN-BiLSTM and the Conv-BiLSTM, are proposed for time series based transductive transfer learning and compared to the baseline CNN model. The automatic feature extraction abilities of the encoder CNN module combined with the superior recall of both short and long term sequences by the decoder LSTM module have shown to be advantageous in transfer learning tasks. The extra ability to process in both forward and backward directions by the proposed models shows promising results to aiding transfer learning. The most consistent transfer learning strategy involved freezing both the CNN and BiLSTM modules while retraining only the fully connected layers. These proposed hybrid transfer learning models were compared to the baseline CNN transfer learning model and newly created hybrid models using the R~2, MAE and RMSE metrics. Three electrical vehicle data-sets were used to test the proposed transfer frameworks. The results favour the hybrid architectures for better transfer learning abilities relative to utilising the baseline CNN transfer learning model. This study offers guidance to enhance time series-based transfer learning by using available data sources.
机译:标记数据可用性有限的问题导致拟合欠置,这对基于准确的时间序列的预测模型产生了负面影响。两个混合的深神经网络架构,即CNN-Bilstm和Conv-Bilstm,用于时间序列基于序列的转换转移学习,并与基线CNN模型相比。编码器CNN模块的自动特征提取能力与解码器LSTM模块的短术和长期序列的优越召回相结合,已经示出了在转移学习任务中是有利的。通过拟议的模型在前向和向后方向处理的额外能力显示了对辅助转移学习的有希望的结果。最一致的转移学习策略涉及在再次再次连接完全连接的层时冻结CNN和BILSTM模块。将这些提出的混合转移学习模型与基线CNN转移学习模型和新创建的混合模型进行了比较,使用R〜2,MAE和RMSE指标。三种电动车辆数据集用于测试所提出的转移框架。结果有利于混合架构,以便相对于利用基线CNN转移学习模型更好地传输学习能力。本研究提供了通过使用可用数据来源提高基于时间序列的转移学习的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号