首页> 外文会议>SPIE Optical Systems Design Conference >Density Estimation in Optical Phase Space for Optimizing Micro-Optical Elements on Freeform Surfaces
【24h】

Density Estimation in Optical Phase Space for Optimizing Micro-Optical Elements on Freeform Surfaces

机译:用于优化自由形表面上微光学元件的光学相空间的密度估计

获取原文

摘要

In imaging and non-imaging optical systems a microstructuring of the final surface of the system is often employed to further shape or diffuse the light distribution (e.g. in non-imaging luminaires or automotive headlights). While the geometry can be described in a parametric form by mapping the micro-optical features onto an underlying smooth freeform surface, ray-tracing an optical system composed of NURBS or polynomial B-spline surfaces for each optimization step can be costly. To reduce the computational overhead of ray-tracing the entire optical system for each optimization step, we perform a density estimation on the radiance distribution on the final smooth freeform surface. We employ a Gaussian Mixture Model (GMM) determined by Expectation Maximization (EM) and Multivariate Spline Approximation to estimate the power density in phase space. Using this continuous density, we gather the incident power on the detector and optimize parametric micro-optical elements on freeform surfaces. This is done in the context of purely specular surfaces, with the work focusing on the density estimation techniques and their side-effects in terms of precision and computational overhead. We demonstrate this density estimation approach for an LED collimator and compare the results to an unbiased Monte-Carlo ray-tracing ground truth.
机译:在成像和非成像光学系统中,系统的最终表面的微观结构通常用于进一步形状或扩散光分布(例如,在非成像灯具或汽车前灯中)。虽然几何形状可以通过将微光学特征映射到基础的光滑自由形状表面上以参数形式描述,但是对于每个优化步骤的NURB或多项式B样条表面组成的光学系统可能是昂贵的。为了减少对每个优化步骤的整个光学系统的光线跟踪的计算开销,我们对最终光滑自由变形表面上的辐射分布执行密度估计。我们采用通过期望最大化(EM)和多变量样条近似确定的高斯混合模型(GMM),以估计相空间中的功率密度。使用这种连续密度,我们在探测器上收集入射电源,并优化在自由外表面上的参数微光学元件。这是在纯粹镜面表面的背景下完成的,该工作侧重于密度估计技术及其在精度和计算开销方面的副作用。我们展示了LED准直器的这种密度估计方法,并将结果与​​非偏见的蒙特卡罗射线跟踪地面实践进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号