首页> 外文会议>International Symposium on Discharges and Electrical Insulation in Vacuum >Design and development of triggering system for synchronized multi-channel operation of parallel connected Railgap switches
【24h】

Design and development of triggering system for synchronized multi-channel operation of parallel connected Railgap switches

机译:平行连接轨道交换机同步多通道操作触发系统的设计与开发

获取原文

摘要

Railgap switches are connected to transfer energy from high energy capacitor bank to enable large coulomb transfer in distributed monde in 1.2MJ capacitor bank `RUDRA' at Energetics & Electromagnetics Division, BARC, Visakhapatnam. The total energy stored in the 1.2MJ bank is segmented in to six modules (of 200kJ each) capable of delivering 3.6MA of peak current with 5 to 7is rise time collectively. `RUDRA' is high current test bed facility for pinch experiments like Magnetized Target Fusion (MTF) and Dense Plasma Focus (DPF) which require fast rising, high peak power and high-energy pulses for their operation. The performance of railgap switch critically relies upon multi-channel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the electrode length in Railgap switch depends on the gap triggering technique and on the rate at which the electric field changes within the gap. In the existing Railgap switches, the consequently imposed stringent requirement on the trigger pulse is that it must have a fast rate of rise >5kV/ns and high peak voltage, largely exceeding the main gap voltage (i.e. typically in the range of 10kV-40kV). Six channels Transmission Line Transformer (TLT) based driver with input and output impedance of ~1.25 Ω and 20 Ω respectively is designed to meet aforesaid criteria of trigger pulse characteristics for demonstrating synchronized discharge of all six modules within jitter limitation of <; 5ns. The uniquely defined 20Ω output impedance of the TLT based trigger generator facilitates transport of trigger pulse to switch without any distortion in its temporal characteristics. The primary capacitance of ~51nF has been used to minimize the droop while the transmission lines are being charged. At 20 kV of primary charging, the TLT produces ~110kV- output pulse of 60ns duration (FWHM) with rise time of better than 15ns (10%-90%). This corresponds to voltage gain efficiency of >70% and dV/dt of ~7kV/ns. Six channels TLT based driver is capable of efficiently driving synchronized discharge in all the six parallel connected Railgap switches within the time limit of <;15ns (i.e. transit time isolation within the parallel connected six modules) to avoid cross-flow of energy in between the parallel connected capacitors/modules.
机译:RailGap开关连接到高能量电容器组的能量转移,以便在Barc,Visakhapatnam的Energetics&Electromagnics Division的1.2MJ电容器库“Rudra”中的分布式Monde中的大型库仑转移。存储在1.2MJBANK中的总能量被分段为六个模块(每千克),能够共同输送3.6mA的峰值电流。 “Rudra”是高电流试验床设施,用于磁化目标融合(MTF)和致密等离子体焦点(DPF),需要快速上升,高峰功率和高能脉冲进行操作。 RailGap开关的性能尺寸依赖于扩展电极(轨道)之间的多通道击穿,以确保沿电极长度的分布电流传递并最小化开关电感。沿轨轨开关中的电极长度的几个同时电弧通道的启动取决于间隙触发技术,以及电场在间隙内变化的速率。在现有的RailGap开关中,因此对触发脉冲的强度要求是它必须具有快速上升率> 5kV / ns和高峰电压,很大程度上超过主间隙电压(即通常在10kv-40kv范围内) )。具有输入和输出阻抗的六个通道传输线变压器(TLT)驱动器分别为约1.25Ω和20Ω,以满足上述触发脉冲特性标准,以便在抖动限制内显示所有六个模块的同步放电<; 5ns。 TLT基于TLT的触发发生器的唯一定义20Ω输出阻抗有助于触发脉冲的传输,在其时间特征中没有任何失真的情况下切换。 〜51nf的主电容已被用于在传输线充电时最小化下垂。在20kV的初级充电时,TLT产生〜110kV-输出脉冲60ns持续时间(fwhm),上升时间优于15ns(10%-90%)。这相当于电压增益效率> 70%和〜7kv / ns的DV / dt。六个通道基于TLT基于TLT的驱动器能够在<; 15ns(即行连接的六个模块内的传输时间隔离)的时限内有效地驱动同步放电。(即行连接的六个模块内的传输时间隔离),以避免之间的横流能量平行连接的电容器/模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号