首页> 外文会议>International Symposium on Discharges and Electrical Insulation in Vacuum >Design and development of triggering system for synchronized multi-channel operation of parallel connected Railgap switches
【24h】

Design and development of triggering system for synchronized multi-channel operation of parallel connected Railgap switches

机译:并行连接的Railgap开关的同步多通道操作触发系统的设计和开发

获取原文

摘要

Railgap switches are connected to transfer energy from high energy capacitor bank to enable large coulomb transfer in distributed monde in 1.2MJ capacitor bank `RUDRA' at Energetics & Electromagnetics Division, BARC, Visakhapatnam. The total energy stored in the 1.2MJ bank is segmented in to six modules (of 200kJ each) capable of delivering 3.6MA of peak current with 5 to 7is rise time collectively. `RUDRA' is high current test bed facility for pinch experiments like Magnetized Target Fusion (MTF) and Dense Plasma Focus (DPF) which require fast rising, high peak power and high-energy pulses for their operation. The performance of railgap switch critically relies upon multi-channel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the electrode length in Railgap switch depends on the gap triggering technique and on the rate at which the electric field changes within the gap. In the existing Railgap switches, the consequently imposed stringent requirement on the trigger pulse is that it must have a fast rate of rise >5kVs and high peak voltage, largely exceeding the main gap voltage (i.e. typically in the range of 10kV-40kV). Six channels Transmission Line Transformer (TLT) based driver with input and output impedance of ~1.25 Ω and 20 Ω respectively is designed to meet aforesaid criteria of trigger pulse characteristics for demonstrating synchronized discharge of all six modules within jitter limitation of <; 5ns. The uniquely defined 20Ω output impedance of the TLT based trigger generator facilitates transport of trigger pulse to switch without any distortion in its temporal characteristics. The primary capacitance of ~51nF has been used to minimize the droop while the transmission lines are being charged. At 20 kV of primary charging, the TLT produces ~110kV- output pulse of 60ns duration (FWHM) with rise time of better than 15ns (10%-90%). This corresponds to voltage gain efficiency of >70% and dV/dt of ~7kVs. Six channels TLT based driver is capable of efficiently driving synchronized discharge in all the six parallel connected Railgap switches within the time limit of <;15ns (i.e. transit time isolation within the parallel connected six modules) to avoid cross-flow of energy in between the parallel connected capacitors/modules.
机译:连接了Railgap开关以从高能电容器组传输能量,以实现维萨卡帕特南BARC的能源与电磁学分部的1.2MJ电容器组“ RUDRA”中的分布式monde中的大库仑传输。存储在1.2MJ库中的总能量分为六个模块(每个模块200kJ),这些模块能够提供3.6MA的峰值电流,并具有5​​至7is的上升时间。 “ RUDRA”是用于捏合实验(例如磁化靶材融合(MTF)和密集等离子体聚焦(DPF))的大电流测试台设备,这些操作需要快速上升,高峰值功率和高能量脉冲。轨隙开关的性能关键取决于扩展电极(导轨)之间的多通道击穿,以确保沿电极长度的分布电流传输并最小化开关电感。在Railgap开关中,沿着电极长度的几个同时发生的电弧通道的产生取决于间隙触发技术和间隙中电场变化的速率。因此,在现有的Railgap开关中,对触发脉冲施加的严格要求是它必须具有> 5kV / ns的快速上升速率和高峰值电压,大大超过主间隙电压(即通常在10kV-40kV的范围内) )。基于六通道传输线变压器(TLT)的驱动器,分别具有约1.25Ω和20Ω的输入和输出阻抗,旨在满足上述触发脉冲特性标准,以证明所有六个模块的同步放电均在<抖动限制内; 5ns。基于TLT的触发发生器的唯一定义的20Ω输出阻抗有助于传输触发脉冲以进行切换,而不会造成其时间特性的任何失真。 〜51nF的初级电容已用于最小化传输线充电时的下降。在20 kV的一次充电时,TLT产生约110kV的输出脉冲,持续时间为60ns(FWHM),上升时间优于15ns(10%-90%)。这对应于> 70%的电压增益效率和〜7kV / ns的dV / dt。基于六通道TLT的驱动器能够在小于15ns的时限内(即,并联的六个模块内的渡越时间隔离)有效地驱动所有六个并联的Railgap开关中的同步放电,从而避免在两个模块之间的能量交叉流动。并联电容器/模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号