首页> 外文会议>Conference on electro-optical and infrared systems: technology and applications >Comparative analysis of high-performance infrared avalanche In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe heterophotodiodes
【24h】

Comparative analysis of high-performance infrared avalanche In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe heterophotodiodes

机译:高性能红外雪崩in_xga_(1-x)_(1-y)和hg_(1-x)cd_xte的HymophotoPotodes的比较分析

获取原文

摘要

Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg_(1-x)Cd_xTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe.
机译:红外(IR)的技术雪崩光电二极管(APD),从简单的单元素APD逐渐移动到2D焦平面阵列(FPA)。的APD的光谱覆盖物连续地从经典1.3微米到较长波长,由于使用窄带隙半导体材料,如Hg_(1-x)的Cd_xTe的扩大。 APD的是非常感兴趣的开发者和不同的光通信,测量及三维重建热成像系统的制造商的。用于制造高性能的APD主要IR探测器材料成为异质结构In_xGa_(1-X)As_yP_(1-y)和Hg_(1-x)的Cd_xTe。在IR APD技术进步是通过认真改进在材料生长技术使能与分开的吸收和倍增区域(SAM)多层heterostuctures的形成实现的。今天SAM-APD设计可以在In_xGa_(1-X)As_yP_(1-y)和Hg_(1-x)的Cd_xTe多层异质结构来实现这两者。为了创造最佳的性能优化设计雪崩heterophotodiode(AHPD)有必要开展代的基本特征,雪崩击穿和电荷载体乘法适当的异质一份详细的理论分析。 AHPD性质的优化需要的依赖于像素的多层结构设计,层掺杂,在该结构的电场的分布和工作温度AHPD的像素性能全面估计。目的本制品是比较基于In_xGa_(1-X)As_yP_(1-y)和Hg_(1-x)的Cd_xTe 1.55微米SAM-AHPDs某些功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号