首页> 外文会议>Electro-optical and infrared systems: technology and applications IX >Comparative analysis of high-performance infrared avalanche In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe heterophotodiodes
【24h】

Comparative analysis of high-performance infrared avalanche In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe heterophotodiodes

机译:高性能红外雪崩In_xGa_(1-x)As_yP_(1-y)和Hg_(1-x)Cd_xTe异质二极管的比较分析

获取原文
获取原文并翻译 | 示例

摘要

Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg_(1-x)Cd_xTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on In_xGa_(1-x)As_yP_(1-y) and Hg_(1-x)Cd_xTe.
机译:红外(IR)雪崩光电二极管(APD)技术逐渐从简单的单元素APD变为2D焦平面阵列(FPA)。由于使用了Hg_(1-x)Cd_xTe等窄间隙半导体材料,APD的光谱覆盖范围从经典的1.3μm连续扩展到更长的波长。 APD对于不同的光通信,测量和3D重建热成像系统的开发人员和制造商来说非常重要。用于制造高性能APD的主要IR检测器材料成为异质外延结构In_xGa_(1-x)As_yP_(1-y)和Hg_(1-x)Cd_xTe。 IR APD技术的进步是通过对材料生长技术的重大改进而实现的,该技术能够形成具有独立吸收区和倍增区(SAM)的多层异质结构。今天,SAM-APD设计可以在In_xGa_(1-x)As_yP_(1-y)和Hg_(1-x)Cd_xTe多层异质外延结构上实现。为了创建性能最佳的最佳设计雪崩异质光电二极管(AHPD),有必要对适当异质结构中电荷载流子的产生,雪崩击穿和繁殖的基本特征进行详细的理论分析。要优化AHPD属性,需要全面评估AHPD的像素性能,具体取决于像素的多层结构设计,层掺杂,结构中的电场分布和工作温度。本文的目的是比较基于In_xGa_(1-x)As_yP_(1-y)和Hg_(1-x)Cd_xTe的1.55μmSAM-AHPD的某些特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号