首页> 外文会议>Mexican International Conference on Artificial Intelligence >Artificial Neural Network for Optimization of a Synthesis Process of γ-Bi_2MoO_6 Using Surface Response Methodology
【24h】

Artificial Neural Network for Optimization of a Synthesis Process of γ-Bi_2MoO_6 Using Surface Response Methodology

机译:用于使用表面响应方法优化γ-Bi_2moo_6的合成过程的人工神经网络

获取原文

摘要

In this work an artificial neural network was utilized in order to optimize the synthesis process of γ-Bi_2MoO_6 oxide by co-precipitation assisted with ultrasonic radiation. This oxide is recognized as an efficient photocatalyst for degradation of organic pollutants in aqueous media. For the synthesis of γ-Bi_2MoO_6 three variables were considered, the exposure time to ultrasonic radiation, calcination time and temperature. The efficiency of photocatalysts synthesized was evaluated in the photodegradation of rhodamine B (rhB) under sun-like irradiation. A set of experimental data were introduced into the neural network, a multilayer type perceptron with a back-propagation learning rule was used to simulate the results by modifying one of the three input variables and observing the efficiency of photocatalysts using besides a response surface methodology.
机译:在这项工作中,利用了人工神经网络,以通过具有超声辐射辅助的共沉淀来优化γ-Bi_2moo_6氧化物的合成过程。 该氧化物被认为是一种有效的光催化剂,用于水性介质中的有机污染物的降解。 对于γ-Bi_2moo_6的合成,考虑了三个变量,曝光时间到超声波辐射,煅烧时间和温度。 在太阳辐射下的罗丹明B(RHB)的光降解中评价了合成的光催化剂的效率。 将一组实验数据引入神经网络中,使用具有背部传播学习规则的多层型感知规则来模拟结果,通过修改三个输入变量之一并使用响应面方法来观察光催化剂的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号