首页> 外文会议>Mexican International Conference on Artificial Intelligence >Semantic Classification of Posts in Social Networks by Means of Concept Hierarchies
【24h】

Semantic Classification of Posts in Social Networks by Means of Concept Hierarchies

机译:通过概念层次结构,社交网络中帖子的语义分类

获取原文

摘要

Social networks are in constant growth, here users share all kind of information such as news, pictures and their personal opinions about different topics. In order to a user can retrieve such content for a topic of interest, it must provide the terms believed to occur in the posts; but in a matter of semantics, this tends to leave out relevant results. This paper proposes an approach to perform semantic classification of posts in social networks using concept hierarchies (CH). This classification is considered as a first step towards semantic searching. In addition, a method to obtain a CH for a particular subject is also proposed. With the implementation of this approach, the obtained results reflect what it seems to be a so promising approach, obtaining more than 64% of accuracy on the F-measure.
机译:社交网络处于不断增长,这里用户分享各种信息,如新闻,图片及其对不同主题的个人意见。 为了向用户可以检索此类内容以获取感兴趣的主题,它必须提供据信的术语在帖子中发生; 但在语义的问题中,这往往会遗漏相关结果。 本文提出了一种使用概念层次结构(CH)在社交网络中对社交网络中帖子进行语义分类的方法。 此分类被视为朝着语义搜索的第一步。 另外,还提出了获得特定主题的CH的方法。 随着这种方法的实现,所获得的结果反映了似乎是如此有前途的方法,从而获得了对F测量的64%以上的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号