首页> 外文会议>IEEE International Conference on Plasma Science >Temporal Evolution of Ion Velocity Distribution Function (IVDF) in a Pulsed, Current-Free, Helicon Generated, Expanding Magnetoplasma
【24h】

Temporal Evolution of Ion Velocity Distribution Function (IVDF) in a Pulsed, Current-Free, Helicon Generated, Expanding Magnetoplasma

机译:在脉冲,无电流,直升机产生的离子速度分布函数(IVDF)的时间演变,产生,膨胀磁化物

获取原文

摘要

Summary form only given. Current-free plasma expansion in a divergent magnetic field is surprisingly common and is found on a variety of spatial scales and in a variety of applications. Plasma expansion is essentially equivalent to a pressure gradient arising from a change in the plasma density. The density gradient can give rise to a potential gradient that retards motion of the lighter plasma electrons but accelerates the more massive ions downstream. The solar wind expansion and corresponding creation of the interplanetary electric field is a classic example of this process. Also, there is strong experimental evidence in support of Alfven''s hypothesis that the aurora results from energetic electrons precipitating onto the upper atmosphere and that the electrons in space could be accelerated by double layer (DL) electric fields with components parallel to the terrestrial magnetic field. Under certain external conditions, theoretical simulations and experimental observations showed that in a helicon plasma expanding into a weaker magnetic field, a DL with a width of a few tens of Debye lengths can form at the end of helicon plasma. The DL accelerates ions to Mach numbers of order 2. In this work, we present the temporal evolution of both parallel and perpendicular to the magnetic field argon ion velocity distribution functions (IVDFs) in pulsed helicon plasmas obtained by using a time resolved laser induced fluorescence technique with 1 ms resolution. At 600 W of RF power and 1 mtorr pressure, for pulses of 200 ms at a duty cycle of 0.5, the DL forms in the first 40 ms of the discharge. The parallel argon ion flow speed rises from 400-500 m/s at the beginning of the pulse to 3000-3500 m/s at the end of the pulse. Perpendicular measurements showed no change in the perpendicular flow speed, consistent with a DL electric field parallel to the background magnetic field
机译:摘要表格仅给出。在发散磁场中的无电流等离子体膨胀令人惊讶的是常见的并且在各种空间尺度和各种应用中发现。等离子体膨胀基本上等同于从等离子体密度的变化产生的压力梯度。密度梯度可以产生延迟较轻等离子体电子的运动的潜在梯度,而是加速下游的巨大离子。太阳能膨胀和行星际电场的相应创建是该过程的经典示例。此外,还有强大的实验证据支持Alfven'的假设,即极光从沉淀到上层大气中的高能电子产生的极光,并且空间中的电子可以通过双层(DL)电场与平行于地面的部件加速磁场。在某些外部条件下,理论模拟和实验观察结果表明,在蠕变等离子体中膨胀成较弱的磁场,宽度为宽度的DL可以在Helicon等离子体的末端形成。 DL将离子加速到马赫数的顺序2中。在这项工作中,我们介绍了通过使用时间分辨激光诱导的荧光获得的脉冲蠕变等离子体中的平行和垂直于磁场氩离子速度分布函数(IVDF)的时间演变具有1 ms分辨率的技术。在600W的RF功率和1毫托的压力下,对于0.5的占空比为200ms的脉冲,DL在排出的前40 ms中形成DL。平行氩离子流速度从400-500米上升/ s的在脉冲的开始到3000-3500米/秒的脉冲结束。垂直测量显示垂直流量速度没有变化,与平行于背景磁场的DL电场一致

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号