首页> 外文会议>IEEE International Conference on Plasma Science >Electron density mapping of atmospheric pressure glow discharge in air using two-wavelength interferometry
【24h】

Electron density mapping of atmospheric pressure glow discharge in air using two-wavelength interferometry

机译:使用双波长干扰测量法在空气中的电气密度映射。使用双波长干涉测量

获取原文

摘要

Summary form only given. Atmospheric pressure air plasmas are of interest in aeronautic applications, such as electromagnetic wave cross-section reduction. The required electron densities for this application exceed 1011 cm-3 and may vary strongly over small spatial scales. Mapping of the electron density therefore requires diagnostic techniques that provide high spatial resolution. A laser interferometric method had been introduced by Leipold et al., where, by modulating the discharge in time it was possible to separate the effect of the electron contribution to the index of refraction from that of the heavy particles. We have used instead two-color laser interferometry to obtain the required separation of the contributions. The lasers were a 30 mW, 0.633 nm He-Ne laser and 50 W, 10.6 mum CO 2 laser, where the power has been reduced to a ap1 W. Heterodyne detection, by means of acousto-optic modulators and lock-in amplifiers at 40 MHz, was used to increase the sensitivity of the diagnostic technique. The object of our studies is a 100 mum diameter positive column of an atmospheric pressure air glow discharge. It is operated in a DC mode with sustaining voltage of 1-5 kV in a 1-5 mm gap between a needle (anode) and a plate (cathode). Discharge characteristics are very similar to those of micro-hollow cathode stabilized glow discharges previously used for the generation of stable, high-density plasmas. Consequently, the electron density is expected to vary between 1012 and 1014 cm-3. The discharge has a negative differential resistance and requires therefore to be ballasted with additional resistance in series. In addition to the electron density measurements, we have used emission spectroscopy (measurements of the rotational spectrum of the N2 second positive system) to estimate the gas temperature, T, and found values for T of approximately 2000 K in the plasma
机译:摘要表格仅给出。大气压空气等离子体对航空应用感兴趣,例如电磁波横截面减少。该应用的所需电子密度超过10 11 cm -3 ,并且可以在小空间尺度上强烈变化。因此,电子密度的映射需要提供高空间分辨率的诊断技术。 Leipold等人介绍了激光干涉方法。,在其中,通过调节排出的时间,可以将电子贡献与重重颗粒的折射率分开。我们使用了双色激光干涉测量,以获得所需的贡献分离。激光器是30 MW,0.633nm He-Ne激光器和50W,10.6毫米CO 2 激光器,其中功率已经降低到AP1 W.外差检测,通过声光使用40 MHz的调制器和锁定放大器,用于提高诊断技术的灵敏度。我们的研究目的是100毫米直径的大气压空气辉光放电的正柱。它以直流模式操作,在针(阳极)和板(阴极)之间的1-5毫米间隙中的高电压为1-5kV。放电特性与先前用于产生稳定的高密度等离子体的微空心阴极稳定的辉光放电非常相似。因此,预期电子密度在10 12 和10 14-sup> cm -3 / sup>之间变化。放电具有负差分电阻,因此需要在串联的额外电阻中凸起。除了电子密度测量外,我们还使用了发射光谱(N 2 第二正系统的旋转谱的测量)来估计气体温度,T,并为t大约2000的测量值k在等离子体中

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号