首页> 外文会议>Design, Automation Test in Europe Conference Exhibition >Low-cost high-accuracy variation characterization for nanoscale IC technologies via novel learning-based techniques
【24h】

Low-cost high-accuracy variation characterization for nanoscale IC technologies via novel learning-based techniques

机译:基于新的学习技术的纳米级IC技术的低成本高精度变化特性

获取原文

摘要

Faster and more accurate variation characterizations of semiconductor devices/circuits are in great demand as process technologies scale down to Fin-FET era. Traditional methods with intensive data testing are extremely costly. In this paper, we propose a novel learning-based high-accuracy data prediction framework inspired by learning methods from computer vision to efficiently characterize variabilities of device/circuit behaviors induced by manufacturing process variations. The key idea is to adaptively learn the underlying data pattern among data with variations from a small set of already obtained data and utilize it to accurately predict the unmeasured data with minimum physical measurement cost. To realize this idea, novel regression modeling techniques based on Gaussian process regression and partial least squares regression with feature extraction and matching are developed. We applied our approach to real-time variation characterization for transistors with multiple geometries from a foundry 28nm CMOS process. The results show that the framework achieves about 14x time speed-up with on average 0.1% error for variation data prediction and under 0.3% error for statistical extraction compared to traditional physical measurements, which demonstrates the efficacy of the framework for accurate and fast variation analysis and statistical modeling.
机译:半导体器件/电路的更快和更准确的变化特性是作为过程技术缩小到Fin-FET时代的过程。具有密集型数据测试的传统方法非常昂贵。在本文中,我们提出了一种基于新的基于学习的高精度数据预测框架,其通过计算机视觉学习方法启发,以有效地表征通过制造过程变化引起的设备/电路行为的变形性。关键思想是自适应地学习数据之间的底层数据模式,这些数据具有来自一小组已经获得的数据的变化,并利用它以精确地预测具有最小物理测量成本的未测量数据。为了实现这一思路,开发了基于高斯过程回归和具有特征提取和匹配的偏最小二乘回归的新型回归建模技术。我们将我们的方法应用于具有来自铸造28nm CMOS工艺的多个几何形状的晶体管的实时变化表征。结果表明,与传统物理测量相比,该框架平均为0.1 %误差为50.1 %误差,与传统的物理测量相比,统计提取的误差下降约为0.1 %。变异分析与统计建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号