首页> 外文会议>AIAA International Space Planes and Hypersonic Systems and Technologies Conference >Developing Optimized Trajectories Derived from Mission and Thermo-structural Constraints
【24h】

Developing Optimized Trajectories Derived from Mission and Thermo-structural Constraints

机译:开发源自任务和热结构约束的优化轨迹

获取原文

摘要

In conjunction with NASA and the Department of Defense, the Johns Hopkins Univer-sity Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisci-plinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced ther-mal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the opti-mization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems.
机译:与美国宇航局和国防部一起,约翰霍普金斯大学应用物理实验室(JHU / APL)一直在调查分析技术,以解决与太阳勘探航天器和高速大气车辆系统相关的许多基本问题。这些问题包括:热结构响应,包括通过使用表面光学性能进行热管理的高温复合结构的影响;空气动力学,具有非平衡化学和气体辐射的影响;和航空热力学,具有材料消融对各种热保护系统(TPS)材料的影响。需要将这些离散工具集成到一个共同的框架中,该框架能够调查跨域 - 界面的调查(包括分析工具,应用负载和环境不确定性),以提供高保真解决方案。除了开发用于耦合空气动力学诱导的Ther-Mal和机械负载的鲁棒工具之外,JHU / APL一直在研究高速车辆的最佳设计作为其轨迹。在传统的设计方法下,系统级任务参数的光学元件,例如飞行的范围和时间的范围和时间是独立于热和机械约束的优化,例如应力和温度。真正最佳的轨迹应优化整个任务和热机械约束。在这项研究下,已经开发出用于高速航天器和大气车辆系统的稳健分析的框架。它已经围绕通用,松散耦合的框架构建,使得可以使用各种容易获得的分析工具。该方法立即解决了许多当前分析不足,并且允许将来的延伸才能处理更复杂的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号