首页> 外文会议>International conference on powder metallurgy particulate materials >MECHANOCHEMICAL ACTIVATION AND REACTIVITY OF PROCESSED CERAMIC MATERIAL
【24h】

MECHANOCHEMICAL ACTIVATION AND REACTIVITY OF PROCESSED CERAMIC MATERIAL

机译:加工陶瓷材料的机械化学活化与反应性

获取原文
获取外文期刊封面目录资料

摘要

In the last ten years, mechanochemical activation is among the most promising fields of investigation oriented to improvement of the materials reactivity. Despite significant advancement achieved in the last two decades, quantification of the reactivity is still very restricted, for two basic reasons: limited possibility of its direct measurement from both structural (crysatallographic) and energetic (thermodynamic) aspect, and heterogenity of the parameters and phenomena related to it. This makes the correlation between specific parameters of activity and reactivity rather complex and ambiguous. Structural parameters and reacting capacity of majority of mechanically activated materials such as mica, alumina, apatite, kaolinite, feldspar, montmorillonite are changing in similar way. Reacting capacity of mechanochemically activated materials is also influenced by defects in their crystal structure. Chemical bonds in the vicinity of dislocations are inclined to elastic deformations, due to the excess of free volume, thus creating nucleation center of a new phase, and increasing material reactivity. Condition of defects and reacting capacity of mechanochemically activated materials is very much influenced by the type and intensity of applied mills. For example, after mechanical activation of apatite in vibrational mill, it becomes amorphous. By changing mill type, it becomes possible to produce material of desired reacting capacity because it is possible to influence arrangement of deformations in the lattice. In this work, experimental results on improvement of several materials reactivity by mechanochemical activation in specially constructed mills will be presented. Their quantitative characterization was examined using the following devices: Coulter Electronics-Coulter Multisizer (physical characterization), Riedhammer Gradient furnace G 100/9 (heat treatment), Philips PW 1710 (X-ray examinations), FT IC spektrometer Bomem-Hartman i Braun Michelson MB-100 (IC spectra), electron microscope JEOL JSM T20 (grain shape, average particle diameter and specific surface).
机译:在过去的十年中,机械化学激活是最有前途的调查领域,以提高材料反应性。尽管在过去二十年中实现了显着的进步,但两种基本原因,反应性的量化仍然非常受限制:其直接测量其直接测量的结构(CrysaTallographic)和能量(热力学)方面,以及参数和现象的异质性。与它有关。这使得活动的特定参数与反应性相当复杂和模糊之间的相关性。大多数机械活性材料的结构参数和反应能力,如云母,氧化铝,磷灰石,高岭石,长石,蒙脱石以类似的方式变化。机械化学活化材料的反应容量也受晶体结构中的缺陷的影响。位于脱位附近的化学键倾向于弹性变形,由于过量的自由体积,从而产生新相的成核中心,并增加材料反应性。机械化学活性材料的缺陷条件和施加磨机的类型和强度的影响非常受影响。例如,在振动磨机中的磷灰石机械活化之后,它变得无定形。通过改变研磨机,可以产生所需的反应能力的材料,因为可以影响晶格中变形的排列。在这项工作中,将提出通过特殊构造的研磨机改善几种材料反应性的实验结果。使用以下设备进行检查定量表征:Coulter Electronics-Coulter MultiSizer(物理特性),Riedhammer梯度炉G 100/9(热处理),飞利浦PW 1710(X射线检查),FT IC Spektrome Bomem-Hartman I Braun Michelson MB-100(IC光谱),电子显微镜JEOL JSM T20(晶粒形,平均粒径和比表面)。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号