【24h】

MECHANOCHEMICAL ACTIVATION AND REACTIVITY OF PROCESSED CERAMIC MATERIAL

机译:加工陶瓷材料的机械化学活化和反应性

获取原文
获取原文并翻译 | 示例

摘要

In the last ten years, mechanochemical activation is among the most promising fields of investigation oriented to improvement of the materials reactivity. Despite significant advancement achieved in the last two decades, quantification of the reactivity is still very restricted, for two basic reasons: limited possibility of its direct measurement from both structural (crysatallographic) and energetic (thermodynamic) aspect, and heterogenity of the parameters and phenomena related to it. This makes the correlation between specific parameters of activity and reactivity rather complex and ambiguous. Structural parameters and reacting capacity of majority of mechanically activated materials such as mica, alumina, apatite, kaolinite, feldspar, montmorillonite are changing in similar way. Reacting capacity of mechanochemically activated materials is also influenced by defects in their crystal structure. Chemical bonds in the vicinity of dislocations are inclined to elastic deformations, due to the excess of free volume, thus creating nucleation center of a new phase, and increasing material reactivity. Condition of defects and reacting capacity of mechanochemically activated materials is very much influenced by the type and intensity of applied mills. For example, after mechanical activation of apatite in vibrational mill, it becomes amorphous. By changing mill type, it becomes possible to produce material of desired reacting capacity because it is possible to influence arrangement of deformations in the lattice. In this work, experimental results on improvement of several materials reactivity by mechanochemical activation in specially constructed mills will be presented. Their quantitative characterization was examined using the following devices: Coulter Electronics-Coulter Multisizer (physical characterization), Riedhammer Gradient furnace G 100/9 (heat treatment), Philips PW 1710 (X-ray examinations), FT IC spektrometer Bomem-Hartman i Braun Michelson MB-100 (IC spectra), electron microscope JEOL JSM T20 (grain shape, average particle diameter and specific surface).
机译:在过去的十年中,机械化学活化是针对改善材料反应性的最有前途的研究领域之一。尽管在过去的二十年中取得了长足的进步,但是由于两个基本原因,对反应性的量化仍然非常有限:从结构(晶体学)和高能(热力学)方面直接测量反应的可能性有限,参数和现象的异质性与之相关。这使得活性和反应性的特定参数之间的相关性变得相当复杂和模糊。大多数机械活化材料(如云母,氧化铝,磷灰石,高岭石,长石,蒙脱石)的结构参数和反应容量都以类似的方式变化。机械化学活化材料的反应能力也受其晶体结构缺陷的影响。由于过量的自由体积,位错附近的化学键倾向于弹性变形,从而形成新相的核中心,并增加了材料的反应性。机械化学活化材料的缺陷状况和反应能力在很大程度上受所用磨机的类型和强度的影响。例如,在振动磨中机械活化磷灰石后,它变成非晶态。通过改变轧机类型,可以生产具有期望的反应能力的材料,因为可以影响晶格中的变形的布置。在这项工作中,将介绍在特殊构造的工厂中通过机械化学活化改善几种材料反应性的实验结果。使用以下设备检查了它们的定量特性:Coulter Electronics-Coulter Multisizer(物理特性),Riedhammer梯度炉G 100/9(热处理),Philips PW 1710(X射线检查),FT IC散射仪Bomem-Hartman i Braun迈克尔逊MB-100(IC光谱),电子显微镜JEOL JSM T20(颗粒形状,平均粒径和比表面积)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号