首页> 外文会议> >Optimization of Silicon Alloy Materials for Lithium Ion Batteries
【24h】

Optimization of Silicon Alloy Materials for Lithium Ion Batteries

机译:锂离子电池硅合金材料的优化

获取原文
获取原文并翻译 | 示例

摘要

Silicon is regarded as one of the most promising anode materials because of its high theoretical specific capacity (4200 mAh/g) compared to commercially available graphite anodes (370 mAh/g). However, Si electrodes suffer considerable volume expansion of up to 300% during electrochemical lithiation, leading to electrode cracking and pulverization of the Si, causing rapid capacity degradation. Various approaches have been applied to solve this problem, including graphite nano-silicon structural composites. In this case, the internal spaces in the nanostructure can act as buffer space to accommodate the volume expansion of the silicon particles. Although some of the nanostructured Si materials achieve high capacity and cyclability, they are usually prepared by complicated and high cost synthetic processes which are difficult to extend to large scale. Another approach is using active/inactive alloys as an efficient way to reduce volume expansion and improve cycling performance. The volume expansion of Si can be suppressed by the presence of inactive components, resulting in the maximum energy density at a given volume expansion. Commercially available and low-cost Si alloys can serve as high capacity Li-storage anodic host materials with reasonable cyclability. Such Si alloy compounds can be made with required chemical stoichiometry and structural architecture though a simple mechanochemical process.
机译:硅被认为是最有前途的阳极材料之一,因为与市场上可买到的石墨阳极(370 mAh / g)相比,硅具有较高的理论比容量(4200 mAh / g)。但是,在电化学锂化过程中,Si电极的体积膨胀高达300%,导致电极破裂和Si粉碎,从而导致容量快速下降。已经应用各种方法来解决该问题,包括石墨纳米硅结构复合材料。在这种情况下,纳米结构中的内部空间可以充当缓冲空间以容纳硅颗粒的体积膨胀。尽管一些纳米结构的硅材料具有高容量和可循环性,但它们通常是通过复杂且成本高的合成工艺制备的,这些工艺难以大规模推广。另一种方法是使用活性/非活性合金作为减少体积膨胀和改善循环性能的有效方法。硅的体积膨胀可以通过惰性组分的存在来抑制,从而在给定的体积膨胀下获得最大的能量密度。市售的低成本硅合金可以用作具有合理循环能力的高容量锂存储阳极主体材料。可以通过简单的机械化学过程以所需的化学计量和结构结构来制备这种Si合金化合物。

著录项

  • 来源
    《》|2018年|368-368|共1页
  • 会议地点 Mainz(DE)
  • 作者单位

    Wildcat Discovery Technologies, 6985 Flanders Drive, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, 6985 Flanders Drive, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, 6985 Flanders Drive, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, 6985 Flanders Drive, San Diego, CA 92121 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号