【24h】

Metric Learning-Based Unsupervised Domain Adaptation for?3D Skeleton Hand Activities Categorization

机译:基于度量学习的无监督域适应 3D 骨架手部活动分类

获取原文
获取原文并翻译 | 示例

摘要

First-person hand activity recognition plays a significant role in the computer vision field with various applications. Thanks to recent advances in depth sensors, several 3D skeleton-based hand activity recognition methods using supervised Deep Learning (DL) have been proposed, proven effective when a large amount of labeled data is available. However, the annotation of such data remains difficult and costly, which motivates the use of unsupervised methods. We propose in this paper a new approach based on unsupervised domain adaptation (UDA) for 3D skeleton hand activity clustering. It aims at exploiting the knowledge-driven from labeled samples of the source domain to categorize the unlabeled ones of the target domain. To this end, we introduce a novel metric learning-based loss function to learn a highly discriminative representation while preserving a good activity recognition accuracy on the source domain. The learned representation is used as a low-level manifold to cluster unlabeled samples. In addition, to ensure the best clustering results, we proposed a statistical and consensus-clustering-based strategy. The proposed approach is experimented on the real-world FPHA data set.
机译:第一人称手部活动识别在计算机视觉领域发挥着重要作用,应用范围广泛。由于深度传感器的最新进展,已经提出了几种使用监督深度学习 (DL) 的基于 3D 骨骼的手部活动识别方法,这些方法在有大量标记数据可用时被证明是有效的。然而,此类数据的注释仍然困难且成本高昂,这促使使用无监督方法。在本文中,我们提出了一种基于无监督域适应 (UDA) 的 3D 骨架手部活动聚类新方法。它旨在利用源域的标记样本驱动的知识,对目标域的未标记样本进行分类。为此,我们引入了一种新的基于度量学习的损失函数,以学习高度判别性的表示,同时在源域上保持良好的活动识别准确性。学习到的表示用作低级流形来对未标记的样本进行聚类。此外,为了确保最佳的聚类结果,我们提出了一种基于统计和共识聚类的策略。所提出的方法在真实世界的 FPHA 数据集上进行了实验。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号