首页> 外文会议>2017 IEEE Winter Conference on Applications of Computer Vision: WACV 2017, Santa Rosa, California, USA, 24-31 March 2017, pages 660-1314 >Telecom Inventory management via object recognition and localisation on Google Street View Images
【24h】

Telecom Inventory management via object recognition and localisation on Google Street View Images

机译:通过 Google 街景图像上的对象识别和定位进行电信库存管理

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method to update assets for telecommunication infrastructure using google street view (GSV) images. The problem is formulated as a object recognition task, followed by use of triangulation to estimate the object coordinates from sensor plane coordinates; To this end, we have explored different state-of-the-art object recognition techniques both from feature engineering and using deep learning namely HOG descriptors with SVM, Deformable parts model (DPM), and Deep learning (DL) using faster RCNNs. While HOG+SVM has proved to be robust human detector, DPM which is based on probabilistic graphical models and DL which is a non-linear classifier have proved their versatility in different types of object recognition problems. Asset recognition from the street view images however pose unique challenge as they could be installed on the ground in various poses, orientations and with occlusions, objects camouflaged in the background and in some cases inter class variation is small. We present comparative performance of these techniques for specific use-case involving telecom equipment for highest precision and recall. The blocks of proposed pipeline are detailed and compared to traditional inventory management methods.
机译:我们提出了一种使用谷歌街景 (GSV) 图像更新电信基础设施资产的新方法。该问题被表述为对象识别任务,然后使用三角测量根据传感器平面坐标估计对象坐标;为此,我们从特征工程和使用深度学习中探索了不同的最先进的对象识别技术,即使用 SVM 的 HOG 描述符、可变形零件模型 (DPM) 和使用更快 RCNN 的深度学习 (DL)。虽然 HOG+SVM 已被证明是稳健的人体检测器,但基于概率图形模型的 DPM 和非线性分类器的 DL 已经证明了它们在不同类型的物体识别问题中的多功能性。然而,从街景图像中识别资产带来了独特的挑战,因为它们可以以各种姿势、方向和遮挡方式安装在地面上,物体伪装在背景中,在某些情况下,类间差异很小。我们介绍了这些技术在涉及电信设备的特定用例中的比较性能,以实现最高精度和召回率。拟议的管道块很详细,并与传统的库存管理方法进行了比较。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号