首页> 外文会议>Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication >Analysis of Pre-earthquake Signals Using ANN: Implication for Short-Term Earthquake Forecasting
【24h】

Analysis of Pre-earthquake Signals Using ANN: Implication for Short-Term Earthquake Forecasting

机译:用人工神经网络分析震前信号:对短期地震预报的意义

获取原文

摘要

Earthquake is complex physical phenomena. The heterogeneous nature of the earth's interior is the reason for the unpredictable nature of earthquake occurrence. In recent years, scientists across the world are trying to develop a model using multiparameter earthquake precursors. In this paper, we discuss the association of abnormal irregularity in solid earth tides (SET) and anomalous transient change outgoing longwave radiation (OLR) with major earthquakes and utilizes a neural network to forecast the occurrence of notable earthquakes. We have considered the area of Simeulue, Indonesia region, and considered earthquakes of magnitude >5.0 takes place during the period from 2004 to 2014. Earthquake parameters for Simeulue, Indonesia region, has been taken for analysis by which anomaly date of solid earth tide and weights has been assigned for the continual anomaly days, OLR anomaly date, distance, day of OLR anomaly, latitude, longitude, anomaly index which appears before the earthquake are selected as input parameters, whereas the date of occurrence of earthquake, latitude, longitude, depth, magnitude are selected as output parameter for the neural network. We have used Elman backpropagation neural network model for forecasting the above-said output parameters. The analysis of the results given by the EBPNN have shown reasonable accuracy. Even though the results have to be tested in other regions, the results of the EBPNN have shown encouraging signs in developing an effective short-term earthquake-forecasting model.
机译:地震是一种复杂的物理现象。地球内部的异质性是地震发生的不可预测性的原因。近年来,世界各地的科学家正试图利用多参数地震前兆建立一个模型。本文讨论了固体固体潮异常不规则性(SET)和异常瞬变输出长波辐射(OLR)与大地震的关系,并利用神经网络预测显著地震的发生。我们考虑了印度尼西亚西穆卢地区,并考虑了2004年至2014年期间发生的5.0级以上地震。对印度尼西亚Simeulue地区的地震参数进行了分析,根据这些参数,固体固体潮的异常日期和权重已分配给连续异常天数,选择OLR异常日期、距离、OLR异常日期、纬度、经度、地震前出现的异常指数作为输入参数,而地震发生日期、纬度、,选择经度、深度、震级作为神经网络的输出参数。我们使用Elman反向传播神经网络模型预测上述输出参数。EBPNN给出的结果分析显示了合理的准确性。尽管这些结果还需要在其他地区进行测试,但EBPNN的结果在开发有效的短期地震预测模型方面显示出了令人鼓舞的迹象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号