首页> 外文会议>IAF Space Communications and Navigation Symposium;International Astronautical Congress >Spacecraft Navigation Using Phase Tracking of X-ray Pulsar Signals
【24h】

Spacecraft Navigation Using Phase Tracking of X-ray Pulsar Signals

机译:使用X射线脉冲信号的相位跟踪的航天器导航

获取原文

摘要

X-ray pulsars are potential spacecraft navigational aids due to signal periodicity, uniqueness, and stability. A subset called millisecond pulsars (MSPs) has the best timing characteristics with long term stabilities similar to atomic clocks. Phase tracking exploits the pulsar's periodic signal to determine spacecraft position. A method of phase tracking X-ray pulsar signals that is applicable to MSPs, which are constrained by low flux, is proposed and simulated. The detected photons are separated into time blocks with observed pulsar signal frequency derivative assumed constant. A maximum likelihood estimator (MLE) for initial phase and a third-order digital phase-locked loop (DPLL) are used over each block to track the phase history. The MLE uses a second-order Taylor polynomial phase model with frequency and frequency derivative fed back from the DPLL. This allows for long blocks where the observed pulsar signal frequency varies to accommodate low flux. Empirical MLE tests are performed to find ranges for the product of detector area and block time when compared to the Cramer-Rao Bound. There is an area-time product lower bound due to low flux and Poisson statistics and an upper bound due to the dynamic stress from the mismatch of orbit dynamics with constant acceleration. For a 1 m~2 detector, the threshold time ranged from one second for the Crab pulsar to 4000 seconds for the lowest flux MSPs. Simulations are performed modeling ten hours of pulsar signal outputs. Two heliocentric trajectories, cruise stage segments of the Cassini and MSL missions, and three Earth orbits: the ISS, a GPS satellite, and a DirecTV satellite were simulated. The Crab pulsar and four MSPs: B1821-24, B1937+21, J0218+4232, and J0437-4715 were considered. Tracking performance depends on detector area due to the trade-off between accumulating photons and reducing dynamic stress. All scenarios were tested with a 1 m~2 detector. The phase tracking output locked on the heliocentric trajecto
机译:由于信号周期性,唯一性和稳定性,X射线脉冲都是潜在的航天器导航助剂。称为毫秒脉冲条件(MSP)的子集具有最佳定时特性,具有与原子钟类似的长期稳定性。相位跟踪利用Pulsar的定期信号来确定航天器位置。提出并模拟应用于由低通量约束的MSP的相位跟踪X射线脉冲信号的方法。检测到的光子被分成时间块,观察到的脉冲星信号频率导数假定恒定。对于初始相位和三阶数字锁相环(DPLL)的最大似然估计器(MLE)用于跟踪相位历史。 Mle使用二阶泰勒多项式相位模型,其中频率和频率导数从DPLL反馈。这允许观察到的脉冲星信号频率变化以适应低通量的长块。与Cramer-Rao绑定相比,执行经验MLE测试以查找检测器区域的乘积和块时间的范围。由于低通量和泊松统计和跨越轨道动态不匹配的动态应力,存在下限的区域时间产品下限。对于1 m〜2检测器,阈值时间为螃蟹脉冲条的一秒为4000秒,最低磁通MSP。模拟进行建模的脉冲信号输出。两种香料轨迹,Cassini和MSL任务的巡航阶段段,以及三个地球轨道:ISS,GPS卫星和直视卫星进行了模拟。 Crab Pulsar和四MSP:B1821-24,B1821-24,B1937 + 21,J0218 + 4232和J0437-4715。跟踪性能取决于累积光子之间的折衷和减少动态应力之间的折射率面积。所有场景都用1 M〜2检测器进行测试。相位跟踪输出锁定在HelioCentric Trajecto上

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号