首页> 外文会议>IAF Astrodynamics Symposium;International Astronautical Congress >Design of low-energy capture trajectories in the elliptic restricted four-body problem
【24h】

Design of low-energy capture trajectories in the elliptic restricted four-body problem

机译:椭圆限制的四体问题低能量捕获轨迹的设计

获取原文

摘要

The fast development of microsatellites and their use for deep space exploration pushed the interest toward the design of low-energy trajectories. These trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, allowing missions with consistent savings of propellant mass, with respect to traditional ones. Because of the inherent high complexity of chaotic dynamics of n-body environments, the design is typically obtained from the combination of some circular restricted 3-body problems (CR3BP). The accuracy of the nominal paths is then verified by numerical analyses in the n-body environment (i.e. ephemerides model) and, as proved by many authors, the presence of other bodies can strongly affect the result. In the present work we propose a method to design internal capture trajectories between the Earth and the Moon in the more accurate dynamical framework of the elliptic restricted 4-body problem (ER4BP). The method is based on a Hamiltonian approach and takes advantage of canonical transformations to obtain a set of the dynamic equations of motion whose form is equivalent to that of the CR3BP. The process starts by expanding the Hamiltonian function for the ER4BP in power series, isolating the terms depending on the eccentricity of the primaries and the mass of the Sun. These terms are then absorbed by a canonical transformation and the resulting function is linearized about the Earth-Moon L1 (or L2) equilibrium point for the CR3BP. This process produces a Hamiltonian function H_2 whose form is equivalent to that of the CR3BP. Finally, a second canonical transformation is performed setting H2 as a sum of three local integrals of motion. The value of each integral is defined by a set of two parameters depending only on the energy level of the system and the masses of the primaries. Based on this representation, ballistic captures can be designed taking advantage of Conley's theorem, which defines their topological location in th
机译:微卫星的快速发展及其对深空勘探的用途推动了对低能轨迹设计的兴趣。这些轨迹利用了宇宙飞船上多个天体的相互作用,允许与传统的传统群众节省一致的特派团。由于N体环境的混沌动力学的固有高复杂性,通常从一些圆形受限制的3体问题(CR3BP)的组合获得。然后通过N-MONITION环境中的数值分析(即,星式化模型)的数值分析验证了标称路径的准确性,并且如许多作者所证明,其他身体的存在会强烈影响结果。在本工作中,我们提出了一种在椭圆限制4体问题(ER4BP)的更准确的动态框架中设计地球和月球之间的内部捕获轨迹的方法。该方法基于Hamiltonian方法,并利用规范转换来获取一组动态运动的动态方程,其形式相当于CR3BP的动态方程。该过程通过扩展Power系列中ER4BP的HAMILTONIAN功能,根据原初的偏心和太阳的质量隔离术语。然后通过规范转化吸收这些术语,并将所得函数围绕CR3BP的地球L1(或L2)平衡点线性化。此过程产生Hamiltonian函数H_2,其形式相当于CR3BP的形式。最后,执行第二规范转换,将H2设置为3个局部运动的总和。每个积分的值由一组两个参数定义,这仅取决于系统的能量水平和原初的质量。基于这种代表性,可以设计弹性捕获来利用Conley的定理,该定理定义其拓扑位置

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号