首页> 外文会议>IAF Space Propulsion Symposium;International Astronautical Congress >Channel Wall Nozzle Manufacturing Technology Advancements for Liquid Rocket Engines
【24h】

Channel Wall Nozzle Manufacturing Technology Advancements for Liquid Rocket Engines

机译:渠道壁喷嘴制造技术推进液体火箭发动机

获取原文

摘要

A regeneratively-cooled nozzle is a critical component for expansion of the hot gases to enable high temperature and performance liquid rocket engines systems. Channel wall nozzles are a design solution used across the propulsion industry as a simplified method to fabricate the nozzle structure with internal coolant passages. The scale and complexity of the channel wall nozzle (CWN) design is challenging to fabricate leading to extended lead times and higher costs. Some of these challenges include: 1) unique and high temperature materials, 2) Tight tolerances during manufacturing and assembly to contain high pressure propellants, 3) thin-walled features to maintain adequate wall temperatures, and 4) Unique manufacturing process operations and tooling. The United States (U.S.) National Aeronautics and Space Administration (NASA) along with U.S. specialty manufacturing vendors are maturing modern fabrication techniques to reduce complexity and decrease costs associated with channel wall nozzle manufacturing technology. Additive Manufacturing (AM) is one of the key technology advancements being evaluated for channel wall nozzles. Much of additive manufacturing for propulsion components has focused on powder bed fusion, but the scale is not yet feasible for application to large scale nozzles. NASA is evolving directed energy deposition (DED) techniques for nozzles including arc-based deposition, blown powder deposition, and Laser Wire Direct Closeout (LWDC). There are different approaches being considered for fabrication of the nozzle and each of these DED processes offer unique process steps for rapid fabrication. The arc-based and blown powder deposition techniques are being used for the forming of the CWN liner. A variety of materials are being demonstrated including Inconel 625. Haynes 230, JBK-75. and NASA HR-1. The blown powder DED process is also being demonstrated for forming an integral channel nozzle in a single operation in similar materials. The LWDC process
机译:再生冷却的喷嘴是用于膨胀热气体以实现高温和性能液体火箭发动机系统的关键部件。通道壁喷嘴是推进工业中使用的设计溶液,作为制造具有内部冷却液通道的喷嘴结构的简化方法。沟道壁喷嘴(CWN)设计的规模和复杂性是挑战,以制造导致延长的交货时间和更高的成本。其中一些挑战包括:1)独特和高温材料,2)制造和组装期间的紧张公差,含有高压推进剂,3)薄壁特征,保持足够的墙面温度,4)独特的制造工艺操作和工具。美国国家航空航天局(美国宇航局)以及美国专业制造厂均采用现代制造技术成熟,以降低与通道墙喷嘴制造技术相关的复杂性和降低成本。添加剂制造(AM)是对通道壁喷嘴评估的关键技术进步之一。用于推进组分的许多添加剂制造都集中在粉末沉默上,但尺度尚不可行于应用于大型喷嘴。 NASA正在不断发展的用于喷嘴的能量沉积(DED)技术,包括基于弧形的沉积,吹粉末沉积和激光线直接收集(LWDC)。用于制造喷嘴的制造具有不同的方法,并且这些DED过程中的每一个都提供了快速制造的独特工艺步骤。基于电弧和吹粉沉积技术用于形成CWN衬里。正在展示各种材料,包括Inconel 625.Haynes 230,JBK-75。和NASA HR-1。还展示了吹塑的粉末代理工艺,用于在类似材料的单个操作中形成整体通道喷嘴。 LWDC过程

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号