首页> 外文会议>IAA Symposium on Small Satellite Missions;International Astronautical Congress >Ionospheric Drag for Accelerated Deorbit from Upper Low Earth Orbit
【24h】

Ionospheric Drag for Accelerated Deorbit from Upper Low Earth Orbit

机译:来自上低地轨道加速脱毛的电离层拖曳

获取原文

摘要

Orbit debris mitigation restrictions placed on the growing number of miniaturised spacecraft often constrain their operational altitudes to less than approximately 600km where drag accelerations are sufficient to deorbit the spacecraft within a tolerable amount of time. Operation at higher, Low Earth Orbit (LEO) altitudes often necessitates active measures to deorbit miniaturised spacecraft such as propulsion systems. However, the inclusion of propulsion systems adds cost and complexity and is not always desirable, particularly for adopters of agile spacecraft development methodologies. This work investigates the feasibility of ionospheric drag, the component of drag caused by an electrically charged body's exchange of momentum with ions and electrons of the ionosphere, to accelerate the deorbit of miniaturised spacecraft in high LEO (600-1000 km altitude). This work will study how actively charging the surface of a miniaturised satellite in high LEO may enhance the overall magnitude of the drag acceleration, due to the ionospheric drag, acting to deorbit the spacecraft. This work takes surrogate models of the charged drag coefficient, as a function of scaling parameters, generated by Particle-in-Cell simulations. The charged drag coefficient surrogate model is incorporated into an orbit propagator where deorbit times are predicted over various orbital and vehicular initial conditions. Results suggest that the ratio of the ionospheric drag component to the neutral drag component is large at high LEO due to the relatively high ratio of ionospheric to thermospheric density. Therefore, ionospheric drag is relatively more cflicicnt al dcorbiting spacecraft at high LEO compared to neutral drag. Additionally, the magnitude of ionospheric drag is tailorable based on changes in the electrical surface potential of the satellite relative to the free-stream plasma. The primary payload of many miniaturised spacecraft often require high-voltage electrical systems. These same ele
机译:放置在越来越多的小型航天器上的轨道碎片缓解限制通常将其运行高度限制为小于约600km,其中拖曳加速度足以在可容许的时间内降低航天器。在较高,低地球轨道(LEO)海拔地区的操作通常需要积极措施,以防止小型化的航天器如推进系统。然而,包含推进系统增加了成本和复杂性,并且并不总是可取的,特别是对于敏捷航天器发育方法的采用者。这项工作调查了电离层阻力的可行性,由电荷的身体与电离层的离子交换的电荷的身体交换引起的阻力组分,以加速高利奥(600-1000公里海拔600-1000公里)的小型化航天器的脱毛。这项工作将研究高利4中小型化卫星表面的主动充电如何提高拖曳加速度的总大小,这是由于电离层阻力,以防止航天器。这项工作采取了带电拖动系数的代理模型,作为通过粒子内模拟产生的缩放参数的函数。充电拖曳系数代理模型被纳入轨道传播者,其中在各种轨道和车辆初始条件下预测了脱毛时间。结果表明,由于电离层与热散晶密度相对高,电离层阻力组分与中性阻力组分的比率大。因此,与中性阻力相比,电离层阻力在高狮子座中相对较高的CFLICICNT AL DCORGATING航天器。另外,电离层阻力的大小可以根据卫星相对于自由流等离子体的电表电位的变化来定制。许多小型化航天器的主要有效载荷通常需要高压电气系统。这些相同的元素

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号