首页> 外文期刊>Acta astronautica >Ionospheric drag for accelerated deorbit from upper low earth orbit
【24h】

Ionospheric drag for accelerated deorbit from upper low earth orbit

机译:来自上低地轨道加速脱毛的电离层拖曳

获取原文
获取原文并翻译 | 示例
           

摘要

Orbit debris mitigation restrictions placed on the growing number of miniaturised spacecraft often constrain their operational altitudes to less than approximately 600km where drag accelerations are sufficient to deorbit the spacecraft within 25 year guidelines. Operation at higher, Low Earth Orbit (LEO) altitudes often necessitates active measures to deorbit miniaturised spacecraft such as propulsion systems. However, the inclusion of propulsion systems is not always desirable because of the added cost and complexity. This work investigates the feasibility of ionospheric drag, the component of drag caused by an electrically charged body's exchange of momentum with the ionosphere, to accelerate the deorbit of miniaturised spacecraft in high LEO (600-1000 km altitude). This work studies how actively charging the surface of a miniaturised satellite in high LEO may enhance the overall magnitude of the drag acceleration, due to the ionospheric drag, acting to deorbit the spacecraft. This is achieved using surrogate models of the charged drag coefficient, as a function of plasma scaling parameters, generated by Particle-in-Cell simulations. The charged drag coefficient surrogate model is incorporated into an orbit propagator where deorbit times are predicted over various orbital and vehicular initial conditions. Results suggest that the magnitude of ionospheric drag can be an order of magnitude larger than the neutral drag at 850 km altitude compared to approximately half the magnitude of neutral drag at 500 km altitude. Therefore, ionospheric drag is relatively more efficient at deorbiting spacecraft at high LEO compared to neutral drag. Additionally, the magnitude of ionospheric drag is tailorable based on changes in the electrical surface potential of the satellite relative to a quasi-neutral free-stream plasma. The primary payload of many miniaturised spacecraft often require high-voltage electrical systems. These same electrical systems could conceivably be utilised to generate ionospheric drag via surface charging, at the end of the mission-life, at little additional cost or system complexity. Thus, the implications of this work include the possible uncovering of a simple mechanism for deorbiting miniaturised spacecraft from high LEO altitudes for compliance with orbit debris mitigation guidelines.
机译:在越来越多的小型航天器上放置的轨道碎片缓解限制通常将其运行高度限制为小于约600km,其中拖累加速度足以在25年内的准则内降低宇宙飞船。在较高的情况下操作,低地球轨道(LEO)高度通常需要积极措施,以使小型化的宇宙飞船如推进系统进行脱毛。然而,由于增加的成本和复杂性,因此包含推进系统并不总是理想的。这项工作调查了电离层拖曳的可行性,由电荷的身体与电离层的电荷的动力交换引起的阻力组分,以加速小利奥(600-1000公里高度)的小型化航天器的脱毛。这项工作研究了如何在高利4中充满小型化卫星表面的主动充电可能提高阻力加速的总大小,由于电离层阻力,以防止航天器。这是使用带电拖动系数的代理模型来实现,作为通过粒子内模拟产生的等离子体缩放参数的函数。充电拖曳系数代理模型被纳入轨道传播者,其中在各种轨道和车辆初始条件下预测了脱毛时间。结果表明,电离层阻力的大小可以是大于850 km高度的中性拖曳的数量级,而中性拖拉的大约500公里高度的一半。因此,与中性阻力相比,在高利奥下,电离层阻力相对较高。另外,电离层阻力的幅度是基于卫星相对于准中性自由流等离子体的电表电位的变化来定制的。许多小型化航天器的主要有效载荷通常需要高压电气系统。这些相同的电气系统可以可想地用于通过表面充电在任务生活结束时产生电离层拖曳,几乎没有额外的成本或系统复杂性。因此,这项工作的含义包括可能揭示一种简单的机制,用于从高利尿高度从高利尿高度遵守符合轨道碎片缓解指南的简单机制。

著录项

  • 来源
    《Acta astronautica》 |2020年第11期|520-530|共11页
  • 作者单位

    Univ New South Wales Canberra Sch Engn & Informat Technol Northcott Dr Campbell ACT 2600 Australia;

    Univ New South Wales Canberra Sch Engn & Informat Technol Northcott Dr Campbell ACT 2600 Australia;

    Univ New South Wales Canberra Sch Engn & Informat Technol Northcott Dr Campbell ACT 2600 Australia;

    Univ New South Wales Canberra Sch Engn & Informat Technol Northcott Dr Campbell ACT 2600 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Small satellites; Deorbit; Ionospheric aerodynamics; Space traffic management; Space environment management;

    机译:小卫星;防床;电离层空气动力学;空间交通管理;空间环境管理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号