首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Electrodeposition of Copper Using Polyelectrolyte Membranes: Effective Ion Transport through Solid-Liquid Interface
【24h】

Electrodeposition of Copper Using Polyelectrolyte Membranes: Effective Ion Transport through Solid-Liquid Interface

机译:使用聚电解质膜电沉积:通过固液界面的有效离子输送

获取原文

摘要

The widespread demand of coating, corrosion protection, metallurgy, and microelectronics industries for electrodeposition has been met by developing current successful, commercially-available deposition baths containing metallic salts at higher concentration, highly concentrated supporting electrolytes, and various kinds of organic additives, enabling higher deposition rate, greater current efficiency, and long-term stability for the baths. However, developing effective deposition systems for high-performance electrodeposition is challenging, because, (1) in product point of view, the additives sometimes and rather often cause mechanical and/or electrical problems for deposited metal circuit elements due to inclusion of such additives during deposition process, and, (2) in processing point of view, commercial electrodeposition setups cause huge amount of detrimental effluents that can be a serious environmental and cost problems. These issues may be a product of compromise that is particularly relevant for structure and properties of the deposited metals (film resistivity, surface roughness, mechanical and adhesion strength), and processing (costs and manufacturing steps including rinsing and detrimental effluents treatment). The current solution-based electrodeposition systems are generally incapable of significantly increasing reaction rate (deposition rate constant) form dilute electrolyte solution, because diffusion-limiting current that needs to be higher for industrial manufacturing depends on the concentration (and its gradient) of electrolyte solution, which can be described by Fick's first law in a steady-state electrodeposition. Additionally, current electrodeposition systems are optimized for large area substrate and mass production manufacturing, thereby cannot be suitable for small-lot, on-demand, and multi-product microfabrication. These have inspired the use of polyelectrolyte membranes to encapsulate metallic ions within inside their channels to concentrate from electrolyte solution while maintaining efficient ion transport properties owing to high density anionic counterparts inside channels and the swelling nature of the membrane. We now show that when the polyelectrolyte membrane does not anchor itself to the cathode substrate, stable electrodeposition of metals on cathode surface is achieved, not as much like a solution-phase electrodeposition, resulting in a new type of solid-state electrodeposition (SED) system (Fig. 1).
机译:通过在较高浓度,高度浓缩的载体电解质和各种有机添加剂中开发含有金属盐的电流成功的成功,商业上可用的沉积浴,涂覆,腐蚀保护,冶金和微电子工业的涂层,腐蚀,冶金和微电子工业的需求。沉积速率,更大的电流效率和浴室的长期稳定性。然而,开发用于高性能电沉积的有效沉积系统是具有挑战性的,因为(1)在产品观点中,添加剂有时并且相当常常导致沉积的金属回路元件的机械和/或电气问题,因为包括这种添加剂沉积过程,(2)在处理的观点中,商业电沉积设置会导致大量的有害流出物,这可能是严重的环境和成本问题。这些问题可以是折衷的乘积,其与沉积金属的结构和性质(薄膜电阻率,表面粗糙度,机械和粘附强度)和加工(包括漂洗和有害流出物处理的成本和制造步骤)特别相关。目前基于溶液的电沉积系统通常不能显着增加反应速率(沉积速率常数)稀释电解质溶液,因为需要更高的工业制造需要更高的扩散限制电流取决于电解质溶液的浓度(及其梯度) ,这可以通过Fick在稳态电沉积中的第一定律描述。另外,电流电沉积系统针对大面积基板和批量生产制造进行了优化,从而不能适用于小批次,需求和多产品微制造。这些已经启发了使用聚电解质膜来封装在其通道内的金属离子,以浓缩来自电解质溶液,同时保持有效的离子传输性能,由于内部通道内的高密度阴离子对应物和膜的溶胀性质。我们现在表明,当聚电解质膜不锚固到阴极基板时,实现了阴极表面上金属的稳定电沉积,不像溶液相电沉积一样多样,导致新型的固态电沉积(SED)系统(图1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号