首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Phototropic Growth of Semiconductor Mesostructures Exhibits Auto-Optimizing Interfacial Light Absorption
【24h】

Phototropic Growth of Semiconductor Mesostructures Exhibits Auto-Optimizing Interfacial Light Absorption

机译:半导体腹部结构的光致生长表现出自动优化的界面光吸收

获取原文

摘要

Inorganic phototropic growth of chalcogen semiconductors wherein a uniform, incoherent, uncorrelated beam of light enables control over the morphology and growth direction of an evolving deposit in three-dimensional space at the nanoscale is explored. Such evolution is similar to natural phototropism exhibited by many photosynthetic plants wherein the physical extension of the biological system proceeds preferentially towards the time-averaged position of the sun. In analogy, during inorganic phototropic growth, a semiconductor material is electrodeposited under illumination and mass is addition is correlated with the spatial distribution of the light absorption. Highly periodic nanostructured films can be generated over macroscopic square centimeter areas in this manner. No laser source, photomask nor structure light field is necessary nor utilized. Additionally, no chemical templating agents (ligands, surfactants) are used. Isotropic morphologies consisting of ordered arrays of nanopores were generated using unpolarized illumination whereas linearly polarized light resulted in highly-anisotropic nanoridge/trough morphologies with the in-plane orientation of the patterns controlled by the direction of the light polarization. The pattern periodicity was encoded by the illumination spectral profile. A single periodicity in single spatial direction was only generated even with the use of broadband and multimodal spectral profiles and multiple polarization inputs and the periodicity was found to be sensitive to all investigated tuning of such profiles. Structures with nonequal periodicities in the two orthogonal in-plane directions could also be generated and both periodicities could be independently controlled. Structural complexity correlated with the complexity of optical inputs. Modeling of the growth using a combination of full-wave electromagnetic simulations of light absorption and scattering coupled with Monte Carlo simulations of mass addition successfully reproduced the experimentally observed morphologies and indicated that morphology development was in fact directed by evolution of the growth interface to maximize anisotropic light collection. This work may be useful for the high-throughput generation of light-trapping absorbers films, photonic elements, and platforms for (photo)electrocatalysts.
机译:硫代半导体的无机光致生长,其中均匀,不相互不相关的光束能够控制探讨纳米级的三维空间中的不断变化的形态和生长方向。这种进化类似于许多光合植物所呈现的自然光谱,其中生物系统的物理延伸优先朝向太阳的时间平均位置进行。在类似地,在无机光学生长期间,在照明下电沉积半导体材料,并且添加质量与光吸收的空间分布相关。可以以这种方式在宏观方形厘米区域上产生高度周期性的纳米结构薄膜。不需要激光源,光掩模,光掩模,也不是结构光场。另外,不使用化学模板(配体,表面活性剂)。使用未偏振的照明产生由有序纳米孔阵列组成的各向同性形态,而线性偏振光导致具有由光极化方向控制的图案的面内取向的高度各向异性纳米涡流器/槽形态。模式周期由照明谱分布编码。即使在使用宽带和多模式谱分析和多差点输入和周期度,也仅产生单个空间方向上的单个周期性,并且发现周期性对这种轮廓的所有调整调谐敏感。还可以生成两个正交面内方向上非正周周期性的结构,并且可以独立地控制两个周期性。结构复杂性与光学输入的复杂性相关。利用全波电磁模拟的光吸收和散射的组合建模,散射与蒙特卡罗模拟的质量添加成功再现了实验观察到的形态,并表明了形态学发育实际上是通过生长界面的演变来最大化各向异性的光收集。这项工作对于(照片)电催化剂的光捕获吸收剂薄膜,光子元件和平台的高通量产生可能是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号