首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Interfacial Potentials in a Thin Film All-Solid-State Li-Ion Battery Probed By in Operando KPFM
【24h】

Interfacial Potentials in a Thin Film All-Solid-State Li-Ion Battery Probed By in Operando KPFM

机译:在Operando KPFM探测的薄膜全固态锂离子电池中的界面电位

获取原文

摘要

Designing smaller, safer, cheaper, and more stable batteries necessitates thorough understanding of the electrochemical processes governing their operation at multiple length scales. In all-solid-state power sources the electrolyte is no-flammable and can be made ultimately thin, making them safer and more compact. Yet, experimental evidence suggests that the multiple internal interfaces in their layered structure give rise to high impedances, limiting their performance. Studying these nanoscopic interfaces requires microscopic tools. Here, we employ in operando Kelvin Probe Force Microscopy (KPFM) to quantitatively measure the potential distribution in a solid-state Li-ion battery as a function of its state of charge. The battery was fabricated by sequentially depositing thin layers of Pt (110-130 nm), LiCoO_2 (280-420 nm), LIPON (1100-1200 nm), Si (50-240 nm) Cu or Pt (150-200 nm) onto a Si/SiO_2 wafer (oxide thickness 100 nm). The fabricated battery was cleaved in an Ar atmosphere to expose the stacked layers, mounted on a holder, wired, and safely transferred without exposing to air into a dual-beam instrument that combines a scanning electron microscope (SEM), a Ga-ion focused ion beam (FIB) and an atomic force microscope (AFM) in one vacuum chamber (residual pressure of 10~(-4) Pa). The stacked battery was milled to expose a cross-section of the layers, and imaged using SEM and KPFM, while cycling the battery. The acquired potential maps reveal a highly non-uniform interelectrode potential distribution, with most of the potential drop occurring at the electrolyte-Si anode interface in the pristine battery. During the first charge, the potential distribution gradually changes, revealing complex polarization within the LIPON layer due to Li-ion redistribution. Cycling the battery at high rate significantly decreased its capacity, although the capacity loss can be recovered. KPFM imaging allowed the detection of the interface responsible for this capacity loss. Li distribution in the battery was also measured using Neutron Depth Profiling as a function of the state of charge. The acquired data was compared to first principles calculations shedding light onto the interfacial Li-ion transport in the battery and its reversibility.
机译:设计较小,更安全,更便宜,更稳定的电池需要彻底了解在多个长度尺度下控制其操作的电化学过程。在全固态电源中,电解质是无易燃的,最终可以薄,使它们更安全,更紧凑。然而,实验证据表明,其层状结构中的多个内部接口产生了高阻抗,限制了它们的性能。研究这些纳米镜界面需要微观工具。在此,我们在Ormandando Kelvin探针力显微镜(KPFM)中,以定量测量固态锂离子电池中的电位分布作为其充电状态。通过顺序沉积Pt(110-130nm),LiCoO_2(280-420nm),Lipon(1100-1200nm),Si(50-240nm)Cu或Pt(150-200nm)来制造电池进入Si / SiO_2晶片(氧化物厚度100nm)。在AR气氛中切割制造的电池以暴露堆叠的层,安装在支架上,有线和安全地传送,而不暴露在结合扫描电子显微镜(SEM)的双梁仪器中,将GA离子聚焦一种真空室中的离子束(FIB)和原子力显微镜(AFM)(残留压力为10〜(-4)PA)。铣削堆叠电池以露出层的横截面,并使用SEM和KPFM成像,同时循环电池。所获取的潜在地图显示出高度不均匀的电极电位分布,其中大多数在原始电池中的电解质-SI阳极接口处发生的大多数电位下降。在第一电荷期间,电位分布逐渐变化,揭示由于锂离子再分布引起的脂质层内的复合极化。尽管可以恢复容量损耗,但高速循环电池的高速循环显着降低。 KPFM成像允许检测负责此容量损耗的接口。在电池中的锂分布也使用中子深度分析作为充电状态的函数测量。将获得的数据与第一个原则计算进行比较,将光缩小到电池中的界面锂离子输送及其可逆性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号