首页> 外文学位 >In situ Analytical Characterization of Interfacial Phenomena in All-Solid-State Lithium Ion Thin Film Batteries.
【24h】

In situ Analytical Characterization of Interfacial Phenomena in All-Solid-State Lithium Ion Thin Film Batteries.

机译:全固态锂离子薄膜电池中界面现象的原位分析表征。

获取原文
获取原文并翻译 | 示例

摘要

Lithium ion batteries have become one of the most important rechargeable energy storage devices used in our modern society today. As the demand for such devices shift from portable electronics to electric vehicles and large scale storage in order to utilize energy sustainably, ever increasing energy densities both in terms of weight and volume are needed. To satisfy this demand, lithium ion batteries utilizing solid state electrolytes show promise of a new paradigm shift in energy storage technologies. The introduction of solid state electrolyte could, in principle, yield many advantages over conventional lithium ion batteries. Foremost, lithium metal can be used as the anode along with a high voltage cathode to boost energy density. Secondly, removal of flammable liquid electrolyte greatly improves the inherent safety of the battery.;We focused on using Focused Ion Beam (FIB) nano-fabrication technique to prepare Transmission Electron Microscopy (TEM) samples of all-solid-state batteries produced through physical vapor deposition techniques. The particular full cell chemistry of lithium cobalt oxide (LiCoO2) as cathode, amorphous silicon (a-Si) as anode, and lithium phosphorus oxynitrdie (LiPON) as electrolyte was used for investigations. Through analysis of TEM images and electron energy loss spectroscopy (EELS), important interfacial phenomena were observed at the anode-electrolyte interface and the cathode-electrolyte interface. Overcharging of the anode resulted in accumulation of lithium at the anode-current collector interface and interdiffusion of phosphorus and silicon atoms at the anode-electrolyte interface.;Furthermore, we developed a unique methodology using FIB fabrication techniques to prepare electrochemically active TEM samples of all-solid-state nanobatteries that can be galvanostatically charged in the FIB or TEM. This new methodology enabled in situ TEM observations of a previously undiscovered interfacial layer between the LiCoO2 cathode and LiPON electrolyte. This interfacial layer is composed of a highly disordered rocksalt like cobalt oxide phase that is oxidized and forms lithium oxide species during in situ charge. Additionally, electrochemically cycling at elevated temperatures (80 °C) causes further decomposition of the cathode layer decreasing the overall capacity and increasing interfacial impedance of the cell. These results indicate that proper engineering of electrode-electrolyte interface is essential for the performance of all-solid-state batteries.
机译:锂离子电池已成为当今现代社会中最重要的可充电储能设备之一。随着对此类设备的需求从便携式电子设备转向电动汽车和大规模存储设备以可持续地利用能量,就重量和体积而言,都需要不断增加的能量密度。为了满足这一需求,利用固态电解质的锂离子电池有望在储能技术上发生新的转变。原则上,固态电解质的引入可比常规锂离子电池产生许多优势。首先,锂金属可以与高压阴极一起用作阳极,以提高能量密度。其次,去除易燃液体电解质大大提高了电池的固有安全性。我们着重使用聚焦离子束(FIB)纳米制造技术制备通过物理方法生产的全固态电池的透射电子显微镜(TEM)样品。气相沉积技术。用于研究的钴酸锂(LiCoO2)阴极,非晶硅(a-Si)阳极和锂磷氧氮化锂(LiPON)的特定全电池化学用于研究。通过对TEM图像和电子能量损失谱(EELS)的分析,在阳极-电解质界面和阴极-电解质界面处观察到重要的界面现象。阳极的过度充电导致锂在阳极-集电器界面处积累,并且磷和硅原子在阳极-电解质界面处相互扩散。此外,我们开发了一种独特的方法,利用FIB制造技术来制备所有电化学活性TEM样品-可以在FIB或TEM中通过恒电流充电的固态纳米电池。这种新的方法可以对未发现的LiCoO2阴极和LiPON电解质之间的界面层进行原位TEM观察。该界面层由高度无序的岩盐(如氧化钴相)组成,该氧化物在原位充电过程中被氧化并形成氧化锂物质。此外,在高温(80°C)下进行电化学循环会导致阴极层进一步分解,从而降低整体容量并增加电池的界面阻抗。这些结果表明,正确设计电极-电解质界面对于全固态电池的性能至关重要。

著录项

  • 作者

    Wang, Ziying.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Energy.;Environmental science.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号