首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >A Study on the Kinetics of the Phase Transformation in Silicon Anodes in Lithium Ion Batteries - in-Situ Experiments and a Computational Model
【24h】

A Study on the Kinetics of the Phase Transformation in Silicon Anodes in Lithium Ion Batteries - in-Situ Experiments and a Computational Model

机译:锂离子电池硅阳极相变性的动力学研究 - 原位实验与计算模型

获取原文

摘要

Being one of the major incentives in advancing technologies, characterizing the phase transformation in materials is yet far from reaching a fully comprehended subject. Understanding the mechanics, thermodynamics, and kinetics of the phase transformation serves a significant role in modeling the performance of materials. In this talk, we introduce a non-destructive in situ method for monitoring the advancement of the reaction front with a resolution of ~10 nm. We combine Picosecond Ultrasonics with Atomic Force Microscopy to study the velocity of the phase boundary propagation and the corresponding volumetric strain. Picosecond Ultrasonics is a pump and probe technique that can measure the thickness of the internal layers of material using ultrasounds that are generated and detected optically. Crystalline silicon is chosen as our model system due to its characteristic phase transformation behavior during its reaction with lithium. Using this technique, we have examined the diffusion of lithium atoms through different crystallographic orientations under various galvanostatic and potentiostatic conditions. Based on these experimental results, we have calibrated a modified Cahn-Hilliard type of phase field model of a moving phase boundary problem. In contrast to the classical formulation, the mobility of the interface can be determined using this modified Cahn-Hilliard model. The relevant thermodynamic and kinetic parameters for the phase transformation due to diffusion of Li in crystalline Si for the two crystallographic orientations are extracted. The extracted model parameters can facilitate the simulation of phase transformation in more complex structures with multiple crystallographic facets.
机译:作为推进技术的主要激励之一,表征材料的阶段转型尚未达到完全理解的主题。了解相变的力学,热力学和动力学在建模材料性能方面对具有重要作用。在这次谈判中,我们介绍了一种非破坏性的方法,用于监测反应前面的升高,分辨率为约10nm。我们将PicoSecond超声器与原子力显微镜结合起来研究相位边界传播的速度和相应的体积应变。 PICOSECOND ULTRASONICS是一种泵和探头技术,可以使用光学产生和检测的超声波测量内部材料层的厚度。由于其与锂反应期间的特征相变行为,选择结晶硅作为模型系统。使用这种技术,我们已经在各种电静脉和稳态条件下检查了锂原子的扩散。基于这些实验结果,我们已经校准了一个改进的Cahn-Halliard类型的移动相位边界问题的相现场模型。与经典制构相比,可以使用该修改的CAHN-HALLIARD模型来确定界面的移动性。提取了两种晶体取向的晶体Si中Li扩散引起的相变热力学和动力学参数。提取的模型参数可以促进在具有多个晶形面的更复杂结构中的相变的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号