首页> 外文学位 >Development of silicon-based anodes and in-situ characterization techniques for lithium ion batteries.
【24h】

Development of silicon-based anodes and in-situ characterization techniques for lithium ion batteries.

机译:硅基阳极的开发和锂离子电池的原位表征技术。

获取原文
获取原文并翻译 | 示例

摘要

Development of lithium ion batteries (LIBs) with higher capacity has been booming worldwide, as growing concerns about environmental issues and increasing petroleum costs. The demands for the LIBs include high energy and power densities, and better cyclic stability in order to meet a wide range of applications, such as portable devices and electric vehicles. Silicon has recently been explored as a promising anode material due to its low discharge potential (<0.4 V) and high specific capacity (4200 mAh g-1). The capacity of silicon potentially exceeds more than 10 times of the conventional graphite anode (372 mAh g-1). However, the silicon anode experiences huge volume expansion (400%) and contraction during electrochemical cycles, resulting in pulverization and disintegration of the active material. For the improvement of the battery performance, understanding of the failure mechanism associated with the stress evolution during cycling is critical.;This study aims (1) to develop high performance anode materials and (2) to analyze the mechanism of the capacity fading using a novel in-situ characterization technique in order to optimize the electrode design for better operation of the battery. The silicon nitride thin film anodes were investigated for the improvement of cycling performance. In addition, the rate performance was enhanced by controlling the parameters in film deposition. Si-based thin films undergo large stresses induced by the volume changes, which results in material degradation and capacity fading. Hence, the in-situ measurement of the electrochemical processes is critical to clarify how the electrode degrades with time under cycling. For the in-situ measurement, a white light interferometry (WLI) and laser vibrometer were used to gather quantitative data. Amorphous silicon (a-Si) was explored for the stress measurement.
机译:随着人们对环境问题和石油成本的日益关注,高容量锂离子电池(LIB)的开发一直在蓬勃发展。对LIB的要求包括高能量和功率密度,以及更好的循环稳定性,以满足便携式设备和电动汽车等广泛的应用。硅由于其低的放电电势(<0.4 V)和高的比容量(4200 mAh g-1),最近已被视为有希望的阳极材料。硅的容量可能超过常规石墨阳极(372 mAh g-1)的10倍以上。然而,硅阳极在电化学循环期间经历巨大的体积膨胀(400%)和收缩,从而导致活性材料的粉碎和崩解。为了提高电池性能,了解与循环过程中应力演化相关的失效机理至关重要。该研究的目的是(1)开发高性能负极材料,(2)使用电池来分析容量衰减的机理。新颖的原位表征技术,以优化电极设计,使电池更好地运行。为了改善循环性能,研究了氮化硅薄膜阳极。另外,通过控制膜沉积中的参数来提高速率性能。硅基薄膜承受体积变化引起的大应力,从而导致材料退化和容量衰减。因此,电化学过程的现场测量对于弄清电极在循环过程中如何随时间退化至关重要。对于原位测量,使用白光干涉仪(WLI)和激光振动计收集定量数据。探索了非晶硅(a-Si)用于应力测量。

著录项

  • 作者

    Yang, Jinho.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Electrical engineering.;Chemical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号