首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >(Invited) Approaches to Understanding and Predicting the Stability of Liquid Electrolytes and the Early Formation of the Solid-Liquid Electrolyte Interphase
【24h】

(Invited) Approaches to Understanding and Predicting the Stability of Liquid Electrolytes and the Early Formation of the Solid-Liquid Electrolyte Interphase

机译:(邀请)接近理解和预测液体电解质的稳定性以及固液电解质间的早期形成

获取原文

摘要

Electrolytes with improved stability have the potential to transform the current state-of-the-art Li-ion architectures and enable future technologies such as multivalent systems (e.g., Mg~(2+), Ca~(2+) and Zn~(2+)), as well as Li-S and Li-O_2 conversion systems. A remaining challenge in the pursuit of rational design of novel and optimized electrolytes is understanding and ultimately predicting the reaction cascade responsible for the creation of a functional liquid-anode solid-electrolyte interface (SEI). We here present an overview of the challenge, coupled with several examples of systems where minority as well as majority speciation of the electrolyte is imperative to understand the origin of the electrochemical window. Furthermore, to address the complexity of the resulting reaction cascade once these species start to decompose, we advocate the need for data-driven approach coupled with a high-throughput quantum chemistry computational infrastructure. To this end, we have constructed a chemical reaction network with tens of thousands of elementary reactions which allow for bond breaking/formation as well as oxidation/reduction reactions. The reaction energetics are obtained from our computational framework which automate geometry optimization and vibrational frequency calculations for molecules, including radical, charged, metal-coordinated, and solvated species. To analyze possible reaction pathways, we apply a graph representation to our network, leveraging an iterative reweighting strategy that solves for all prerequisite branching such that traditional pathfinding algorithms correctly capture coordinated pathways. Machine-learning algorithms operating on bond-formation and breaking energetics aid in rapid evaluation of highly reactive processes. We show that without any apriori chemical intuition, our automated framework can recover favorable reaction paths to form key SEI components, which have been carefully identified over the past two decades. This data-driven approach and infrastructure show promise to accelerate the understanding of chemical reactivity in complex environments, in the aid of novel electrolyte design.
机译:具有改善的稳定性的电解质具有改变当前最先进的锂离子架构并使未来技术(例如Mg〜(2+),Ca〜(2+)和Zn〜( 2+)),以及LI-S和LI-O_2转换系统。追求新颖和优化电解质的合理设计的剩余挑战是理解,最终预测负责创建功能性液体阳极固体电解质界面(SEI)的反应级联。我们在这里概述了挑战的概述,加上了少数群体的若干例子以及电解质的大多数形态,必须了解电化学窗口的起源。此外,一旦这些物种开始分解,我们就此产生了反应级联的复杂性,我们倡导对具有高通量量子化学计算基础架构的数据驱动方法的需求。为此,我们已经构建了一种具有成千上万的基本反应的化学反应网络,其允许粘合/形成以及氧化/还原反应。反应能量是从我们的计算框架获得的,该计算框架自动化几何优化和分子的振动频率计算,包括自由基,带电,金属协调和溶剂化物种。为了分析可能的反应途径,我们将图形表示应用于我们的网络,利用了一个迭代的重新传递策略,该策略解决了所有先决条件分支,使得传统的路径抵抗算法正确捕获协调途径。在快速评估高度反应过程中,在粘合形成和断裂能量辅助过程中运行的机器学习算法。我们表明,没有任何Apriori化学直觉,我们的自动框架可以恢复有利的反应路径,以形成关键的SEI组件,在过去的二十年里经过仔细识别。该数据驱动的方法和基础设施借助于新颖的电解质设计来加速复杂环境中的化学反应性的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号