【24h】

Growth of High Power Ge p-i-n Detectors

机译:高功率GE P-I-N检测器的生长

获取原文

摘要

There is a need for high power, high current, high speed photodetectors, for efficient, high gain RF photonic links, which can operate with 1-5W RF power in the DC to 20 GHz range. This need is currently being met by state-of-art InGaAs photodetectors [1], but there are several material-dependent limitations. It is well known that InGaAs is a very poor thermal conductor. Based strictly on thermal considerations since Ge is a 9.5x better thermal conductor than InGaAs, Ge p-i-n detectors should be able to operate at 2x the RF power, especially at high frequencies. Not as well known is the effect of impact ionization as a limiting nonlinear mechanism for these photodetectors [2,3]. In the low field regime (5V/m - 10V/m) which is the typical operating range for p-i-n diodes, the electron ionization coefficient of InGaAs is more than an order of magnitude greater than that of Ge. The voltage dependent responsivity of the InGaAs detector results in increased 2nd- and 3rd- order harmonic distortion. It has been calculated that there should be 100x less 2nd-order harmonic distortion and 1000x less 3rd-order harmonic distortion with a Ge photodetector. This allows the Ge detector to be used in a broad-band receiver to detect weak signals without being affected by harmonic distortion (spurs) from stronger signals. To fully exploit the material properties of Ge, we have designed the Ge p-i-n detector to be fabricated on Si. Heterogeneous integration with Si permits backside illumination, the optimum configuration for thermal control, allowing the use of front-side heatsinks. In addition, there are the advantages of inexpensive, large Si substrates, compatibility with the multi-B$ Si industry, and potential monolithic integration with Si circuits. The substrate was double-side polished float-zone Si(100) having a resistivity greater than 1.5x104 ohm-cm. The structures were grown using molecular beam epitaxy. The 4% lattice mismatch between the Si and Ge - as accommodated by growth of a 90 nm "virtual" Ge substrate grown at low temperatures. The n+ and p+ contact layers were doped at a concentration of 5x1019/cm3 using Phosphorus and Boron, respectively. For ease in process development the initial Ge p-i-n on Si structures were fabricated in the typical topside illumination configuration. Fig. 1 shows the carrier concentration profile of a device having an "I" layer thickness of 0.65 mm. The transmission electron micrograph, Fig. 2, shows the threading dislocation density to be about 109/cm2. The dark current of a 100 m diameter diode, Fig. 3, is typical of other Ge-on-Si p-i-n diodes [4]. The optical responsivity of this structure is reported in Fig. 4. Efforts are continuing to improve the detector performance by modifications in the epitaxial growth process. References [1] D. A. Tulchinsky, J. B. Boos, D. Park, P. G. Goetz, W. Rabinovich, and K. J. Williams, Journal of Lightwave Technology, 26(4) 408-416, 2008. [2] C. Canali, C. Forzan, A. Neviani, L. Vendrame, E. Zanoni, R. A. Hamm, R. J. Malik, F. Capasso, and S. Chandrasekhar, Applied Physics Letters, 66(9), 1095-1097, 1995. [3] A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, IEEE Photonics Technology Letters, 21(21), 1642-1644, 2009. [4] M. Oehme, J. Werner, E. Kasper, S. Klinger, and M. Berroth, Applied Physics Letters, 91, 051108, 2007.
机译:需要高功率,高电流,高速光电探测器,用于高效,高增益RF光子链路,可以在DC至20GHz范围内以1-5W RF功率运行。目前通过最先进的InGaAs光电探测器[1],但是存在几个材料依赖性限制。众所周知,Ingaas是一种非常差的热导体。由于GE是GE是9.5倍的热导体,因此基于热考虑因素比IngaAs更好,GE P-I-N检测器应该能够在RF功率的2倍下操作,尤其是高频。众所周知,碰撞电离为这些光电探测器的限制非线性机制的影响[2,3]。在低现场制度(5V / m - 10v / m),其是引脚二极管的典型操作范围,Ingaas的电子电离系数大于ge大于ge的数量级。 InGaAs检测器的电压依赖性响应度导致2nd-和3次谐波失真增加。已经计算出了20倍次次谐波失真,与GE PhotoDetector的3个次次谐波失真和1000x少于3级谐波失真。这允许在宽带接收器中使用GE检测器以检测弱信号而不受谐波失真(马刺)的影响。为了充分利用GE的材料特性,我们设计了在Si上制造的GE P-I-N检测器。与SI的异构集成允许背面照明,热控制的最佳配置,允许使用前侧散热器。此外,还有优点,廉价,大的SI基板,与多B $ SI行业的兼容性,以及与SI电路的潜在单片集成。基板是双侧抛光浮子区Si(100),其电阻率大于1.5×10 4欧姆-cm。使用分子束外延生长该结构。 Si和Ge之间的4%晶格错配 - 通过90nm&#x0022的生长来容纳;虚拟" Ge基质在低温下生长。使用磷和硼的浓度为5×1019 / cm 3掺杂N +和P +接触层。为了便于过程,在典型的顶部照明配置中制造了Si结构上的初始GE P-I-N。图。图1示出了具有&#x0022的装置的载体浓度分布; i"层厚度为0.65毫米。透射电子显微照片,图2显示了螺纹位错密度为约109 / cm2。 100μ直径二极管的暗电流。图3是其他GE-on-Si P-I-N二极管的典型典型[4]。在图4中报道了该结构的光学响应率。通过在外延生长过程中,继续提高探测器性能。参考文献[1] Da Tulchinsky,JB Boos,D. Park,PG Goetz,W.Rabinovich和KJ Williams,Lightwave Technology杂志,26(4)408-416,2008。[2] Canali,C. Forzan ,A. Neviani,L.Vendrame,E.Zanoni,Ra Hamm,RJ Malik,F.Capasso和S. Chandrasekhar,应用物理信件,66(9),1095-1097,1995。[3]作为黑斯廷斯,DA Tulchinsky和KJ Williams,IEEE Photonics Technology Letters,21(21),1642-1644,2009。[4] M.Oehme,J.Werner,E. Kasper,S. Klinger和M. Berroth,应用物理信件, 91,051108,2007。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号