首页> 外文会议>IIR Conference on Caloric Cooling;Institut International Du Froid;Center for Environmental Energy Engineering >Purely electronic mechanism for first-order ferromagnetic transitions: an itinerant electron positive feedback and Fermi surface topological change
【24h】

Purely electronic mechanism for first-order ferromagnetic transitions: an itinerant electron positive feedback and Fermi surface topological change

机译:纯电子机制进行一阶铁磁转变:潮流电子阳性反馈和费米表面拓扑变化

获取原文

摘要

Refrigeration and air conditioning are crucial in modern life and in adapting to climate change. In thiscontext, the behavior of magnetic materials around discontinuous phase transitions has great promisefor new, energy efficient, and environmentally friendly solid-state cooling technologies. Hugeexploitable field-induced entropy and temperature changes typically result from the coupling between amaterial’s spin polarized interacting electrons and the crystal structure, i.e. a magnetostructural effect(Bean and Rodbell, 1962). However, magnetostructurally driven cooling responses are nearly alwaysdegraded by hysteresis. We present a first-principles disordered local moment theory (Gyorffy et al.,1985 and Mendive-Tapia and Staunton, 2019) able to find mechanisms for first-order magnetic phasetransitions which are purely electronic in origin, thus avoiding the need for a magnetostructuralcoupling. We show that this electronic mechanism arises from a mutual feedback between magneticordering, associated to different orientational arrangement of local magnetic moments, and theelectronic structure. In particular, the theory presented is used to explain the hysteresis-free giantcooling properties recently measured in a ferromagnetic divalent rare earth orthorhombic compoundEu2In (Guillou et al., 2019), as shown in panels (a) and (b) in the figure below. It is demonstrated that atopological change of the itinerant electron Fermi surface produces a positive feedback on the magneticinteractions, which in turn generates adiscontinuous character for the paramagnetic-ferromagneticphase transition of Eu2In (see panel (c) of the figure below). Results will be compared with thehexagonal Gd2In counterpart, which exhibits a second order ferromagnetic transition instead and so itwill serve to illustrate and contrast our results. First principles magnetic free energies, heat capacities,Fermi surfaces, density of states, and magnetic local moment interactions, and their crucial dependenceon ferromagnetic order underlying the mechanism, will be shown. This work lays down a groundwork toinvestigate why discontinuous phase transitions of this sort are non-hysteretic as well as to search fornew materials.
机译:制冷和空调在现代生活中至关重要,并适应气候变化。在这方面背景下,不连续阶段过渡周围的磁性材料的行为具有很大的承诺用于新的,节能和环保的固态冷却技术。巨大的可利用的场诱导的熵和温度变化通常由A之间的耦合产生材料的自旋极化相互作用电子和晶体结构,即磁性结构效应(豆和Rodbell,1962)。然而,磁性结构驱动的冷却响应几乎是通过滞后降解。我们提出了一项第一原则紊乱的当地片刻理论(Gyorffy等,1985年和Mendive-Tapia和Staunton,2019)能够找到一阶磁阶段的机制纯粹是电子原产地的过渡,从而避免了对磁性结构的需求耦合。我们表明,这种电子机制出现在磁性之间的相互反馈中与局部磁矩的不同取向布置有关,以及电子结构。特别地,呈现的理论用于解释无滞后的巨头最近在铁磁性二价稀土正交性化合物中测量的冷却性能EU2IN(Guillou等,2019),如下图所示,如图所示。它被证明了一个减速电子FERMI表面的拓扑变化会产生磁力的正反馈相互作用,这又产生了副磁性铁磁的专用角色Eu2in的相转变(参见下图的图(c))。结果将与之比较六角形GD2IN对应物,它呈现出二阶铁磁转换,而是它将有助于说明和对比我们的结果。第一个原理磁性自由能量,热能,费米表面,州的密度和磁性当地时刻相互作用及其至关重要的依赖将显示在机制下面的铁磁顺序。这项工作落下了一个基础调查为什么这种不连续的阶段转换是非滞后还是搜索新材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号