首页> 外文会议>EPS Conference on Plasma Physics >Application of modified ASTRA-SPIDER code to simulation of free boundary equilibrium evolution
【24h】

Application of modified ASTRA-SPIDER code to simulation of free boundary equilibrium evolution

机译:改进的ASTRA-蜘蛛代码在自由边界均衡演化模拟中的应用

获取原文

摘要

In our studies a coupling of the equilibrium solver with a transport code is considered. In such 1.5D codes the evolution of poloidal magnetic flux, density and temperatures of plasma species are simulated in 1D approximation on the flux grid and with metric coefficients calculated consistently by 2D equilibrium solver. Our simulations are based on the Automated System for Transport Analysis (ASTRA) [1] and equilibrium solver SPIDER [2]. In the original coupling of the SPIDER to ASTRA7.0 [3] the evolution of the poloidal magnetic flux is computed outside the equilibrium solver. We modified the iteration loop to include the poloidal flux evolution into the internal iteration loop of the equilibrium solver and circuit equations using the grid adapted to magnetic fluxes. So the 2D Grad-Shafranov (GSE) equation in a fixed or free boundary configuration is solved by iterations together with the set of two one-dimensional equations relative to poloidal Ψ and toroidal Φ fluxes on the common grid inside the fixed plasma boundary by means of the SPIDER code [4]: {formula} where the first equation of (1) is the poloidal magnetic field diffusion equation derived from the Ohm's law {formula}, and the second equation is the flux averaged Grad-Shafranov Equation (GSE). Here metric coefficients a22, a33 and the plasma boundary are taken from the solution of 2D GSE, plasma conductivity, σ, plasma pressure, P, and external current, jB, are taken from the transport block, {formula}-volume averaging between two magnetic surfaces, V-volume inside the magnetic surface, {formula} designations of derivatives by the flux variable a(R,Z) and by time. Additionally the iteration loop includes the circuit equations for each current filament in control and passive coils, which determine the control coil voltages and passive coil currents.
机译:在我们研究中,考虑了与运输代码的平衡求解器的耦合。在这样的1.5D编码中,在磁通电网上的1D近似下模拟了聚片磁通,密度和温度的聚合物磁通量,密度和温度,并通过2D平衡求解器始终计算的公制系数。我们的仿真基于自动化系统进行运输分析(Astra)[1]和均衡求解器蜘蛛[2]。在蜘蛛到Astra7.0的原始耦合中,在平衡求解器外计算了单极磁通量的演化。我们修改了迭代环,将栅格助焊剂进入包括使用适合于磁通量的栅格的平衡求解器和电路方程的内部迭代环。因此,固定或自由边界配置中的2D Grad-Shafranov(GSE)方程通过迭代和相对于固定等离子体边界内的公共网格上的单向β和环状φ通量的两个一维方程组合在一起迭代。蜘蛛代码[4]:{公式}(1)的第一等式是从欧姆的法律{公式}导出的针形磁场扩散方程,第二方程是磁通量平均曲折 - Shafranov等式(GSE) 。这里,从2D GSE,等离子体导电性,σ,等离子体压力,P和外部电流的溶液中取出测量系数A22,A33和等离子体边界是从传输块中取出的,{公式} - volume平均在两个磁表面之间,磁性表面内的V卷,{公式}通过通量变量A(R,Z)和时间通过衍生物的指定。另外,迭代环包括控制和无源线圈中的每个电流灯丝的电路方程,其确定控制线圈电压和无源线圈电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号