首页> 外文会议>EPS Conference on Plasma Physics >Observation of the Generalized Neoclassical Toroidal Viscosity Offset Rotation Profile and Implications for ITER
【24h】

Observation of the Generalized Neoclassical Toroidal Viscosity Offset Rotation Profile and Implications for ITER

机译:观察广义新古典环形环形粘度偏移旋转曲线的旋转曲线及其对ITER的影响

获取原文

摘要

Neoclassical Toroidal Viscosity (NTV) due to non-ambipolar particle diffusion that occurs in tokamaks due to low magnitude (δB/B_0~ 0(10~(-3))) 3D applied fields [1,2] is often used for positive purposes including modification of the plasma toroidal rotation profile, V?, to stabilize MHD modes and for ELM suppression at plasma rotation speeds characteristic of unbalanced neutral beam injection. However, tokamak devices aiming to produce high fusion power output, including ITER, are expected to rotate much more slowly due to relatively small levels of momentum injection and larger plasma mass compared to present machines. Therefore methods of producing and altering plasma rotation on these devices are highly desired. Understanding how plasmas intrinsically rotate is of primary interest to confidently extrapolate this effect to ITER-scale plasmas as it may provide significant rotation. A potentially beneficial NTV effect that may be important in slowly rotating plasmas such as envisioned in ITER is the NTV offset rotation [1,3]. Past experimental research has only considered that the NTV offset rotation can occur in the direction opposite to the plasma current (counter-I_p). In the experiments described in this paper, the NTV offset rotation profile, V_0~(NTV), was directly measured and studied in the KSTAR superconducting tokamak in a parameter regime that has shown for the first time controlled rotation in the co-I_p direction at high electron temperature, T_e. This result is expected when considering generalized NTV theory allowing for torques generated by both electron and ion channels, the balance of which yields the V_0~(NTV) profile (electron/ion NTV torque scales as (m_i/m_e)~(0.5)(T_e/T_i)~(3.5) indicating that the electron channel can be dominant) [1,4]. Co-I_p plasma rotation and shear in the plasma outer region has significantly exceeded ITER projections [5].
机译:新古典环形粘度(NTV)归因于由于低幅度发生在托卡马克非双极粒子扩散(δB/ B_0〜0(10〜(-3)))的3D应用领域[1,2]通常用于正目的包括等离子体环向旋转曲线,V的修改?,以稳定MHD模式和在等离子体转动ELM抑制速度不平衡中性束注入的特性。然而,托卡马克装置旨在产生高聚变功率输出,包括ITER,预计将更加缓慢地旋转,由于动量注射,以及较大的等离子体质谱的相对小的水平相比于本机器。因此生产和在这些设备上改变等离子体旋转的方法是高度期望的。如何理解等离子体本质旋转是主要关注的这方面自信地推断ITER规模的等离子体,因为它可以提供显著旋转。其可以是在缓慢旋转的等离子体重要如在ITER设想了一个潜在的有益效果NTV是NTV偏移旋转[1,3]。过去的实验研究才认为NTV偏移旋转可以发生在相反的方向上的等离子体电流(反I_P)。在本文描述的实验中,NTV偏移旋转轮廓,V_0〜(NTV),被直接测量,并在科士达超导在参数政权托卡马克已经示出了用于第一次在受控的旋转在共I_P方向研究高的电子温度,T_e。考虑广义NTV理论允许通过电子和离子通道产生的转矩时,该结果被预期的,平衡它的产生了V_0〜(NTV)简档(电子/离子NTV扭矩秤作为(M_I / M_E)〜(0.5)( T_e / T_i)〜(3.5),这表明电子通道可以是显性)[1,4]。共I_P等离子体旋转和在等离子体外部区域剪切已显著超过ITER凸起[5]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号